Непроизвольная регуляция дыхания. Нервная и гуморальная регуляция дыхания

Основная функция дыхательной системы заключается в обеспечении газообмена кислорода и углекислого газа между окружающей средой и организмом в соответствии с его метаболическими потребностями. В целом эту функцию регулирует сеть многочисленных нейронов ЦНС, которые связаны с дыхательным центром продолговатого мозга.

Под дыхательным центром понимают совокупность нейронов, расположенных в разных отделах ЦНС, обеспечивающих координированную деятельность мышц и приспособление дыхания к условиям внешней и внутренней среды. В 1825 г. П. Флуранс выделил в ЦНС «жизненный узел», Н.А. Миславский (1885) открыл инспираторную и экспираторную части, а позже Ф.В. Овсянниковым был описан дыхательный центр.

Дыхательный центр представляет собой парное образование, состоящее из центра вдоха (инспираторного) и центра выдоха (экспираторного). Каждый центр регулирует дыхание одноименной стороны: при разрушении дыхательного центра с одной стороны наступает прекращение дыхательных движений с этой стороны.

Нейроны верхнего отдела моста, регулирующие акт дыхания, были названы пневмотаксическим центром. На рис. 6.6" показано расположение нейроновдыхательного центра в различных отделах ЦНС. Центр вдоха обладает автоматизмом и находится в тонусе. Центр выдоха регулируется из центра вдоха через пневмотаксичес- кий центр.

Рис. 6.6.

ПН - пневмотаксический центр; ИНСП - инспираторный; ЭКСП - экспираторный. Центры являются двусторонними, но для упрощения схемы на каждой из сторон изображен только один. Перерезка по линии 1 не отражается на дыхании, по линии 2 отделяется пневмотаксический центр, ниже линии 3 наступает остановка дыхания

В структурах моста тоже различают два дыхательных центра. Один из них - пневмотаксический - способствует смене вдоха на выдох (за счет переключения возбуждения из центра вдоха на центр выдоха);

второй центр осуществляет тоническое влияние на дыхательный центр продолговатого мозга.

Экспираторный и инспираторный центры находятся в реципрок- ных отношениях. Под влиянием спонтанной активности нейронов инспираторного центра возникает акт вдоха, во время которого при растяжении легких возбуждаются механорецепторы. Импульсы от механорецепторов по афферентным нейронам возбуждающего нерва поступают в дыхательный центр и вызывают возбуждение экспираторного и торможение инспираторного центра. Это обеспечивает смену вдоха на выдох.

В смене вдоха на выдох существенное значение имеет пневмотак- сический центр, который свое влияние осуществляет через нейроны экспираторного центра (рис. 6.7).

Рис. 6.7.

  • 1 - инспираторный центр; 2 - пневмотаксический центр; 3 - экспираторный центр;
  • 4 - механорецепторы легкого

В момент возбуждения инспираторного центра продолговатого мозга одновременно возникает возбуждение в инспираторном отделе пневмотаксического центра. От последнего по отросткам его нейронов импульсы приходят к экспираторному центру продолговатого мозга, вызывая его возбуждение и по индукции - торможение инс- пираторного центра, что приводит к смене вдоха на выдох.

Таким образом, регуляция дыхания (рис. 6.8) осуществляется благодаря согласованной деятельности всех отделов ЦНС, объединенных понятием дыхательного центра. На степень активности и взаимодействие отделов дыхательного центра влияют различные гуморальные и рефлекторные факторы.

Автомашин дыхательного центра. Способность дыхательного центра к автоматии впервые обнаружена И.М. Сеченовым (1882) в опытах на лягушках в условиях полной деафферентации животных. В этих экспериментах, несмотря на то что афферентные импульсы не поступали в ЦНС, регистрировались колебания потенциалов в дыхательном центре продолговатого мозга.

Об автоматии дыхательного центра свидетельствует опыт Гей- манса с изолированной головой собаки. Ее мозг был перерезан на уровне моста и лишен различных афферентных влияний (были перерезаны языкоглоточный, язычный и тройничный нервы). В этих условиях к дыхательному центру не поступали импульсы не только от легких и дыхательных мышц (вследствие предварительного отделения головы), но и от верхних дыхательных путей (вследствие перерезки названных нервов). Тем не менее у животного сохранились ритмические движения гортани. Этот факт можно объяснить только наличием ритмической активности нейронов дыхательного центра.

Автоматия дыхательного центра поддерживается и изменяется под влиянием импульсов от дыхательных мышц, сосудистых рефлексогенных зон, различных интеро- и экстерорецепторов, а также под влиянием многих гуморальных факторов (pH крови, содержание углекислого газа и кислорода в крови и др).

Влияние углекислого газа на состояние дыхательного центра. Влияние углекислого газа на активность дыхательного центра особенно ярко демонстрируется в опыте Фредерика с перекрестным кровообращением. У двух собак перерезают сонные артерии и яремные вены и соединяют перекрестно: периферический конец сонной артерии соединяют с центральным концом этого же сосуда второй собаки. Так же перекрестно соединяют и яремные вены: центральный конец яремной вены первой собаки соединяется с периферическим концом яремной вены второй собаки. В результате кровь от туловища первой собаки поступает к голове второй собаки, а кровь от туловища второй собаки - к голове первой собаки. Все другие сосуды перевязывают.

После такой операции у первой собаки производили зажатие трахеи (удушение). Это приводило к тому, что через некоторое время наблюдались увеличение глубины и частоты дыхания у второй собаки

(гиперпноэ), тогда как у первой собаки наступала остановка дыхания (апноэ). Объясняется это тем, что у первой собаки в результате зажатия трахеи не осуществлялся обмен газов, а в крови увеличивалось содержание углекислого газа (наступала гиперкапния) и уменьшалось содержание кислорода. Эта кровь поступала к голове второй собаки и оказывала влияние на клетки дыхательного центра, следствием чего явилось гиперпноэ. Но в процессе усиленной вентиляции легких в крови второй собаки уменьшалось содержание углекислого газа (гипокапния) и увеличивалось содержание кислорода. Кровь с уменьшенным содержанием углекислого газа поступала к клеткам дыхательного центра первой собаки, и раздражение последнего уменьшалось, что приводило к апноэ.

Таким образом, увеличение содержания углекислого газа в крови приводит к увеличению глубины и частоты дыхания, а уменьшение содержания углекислого газа и увеличение кислорода - к его уменьшению вплоть до остановки дыхания. В тех наблюдениях, когда первой собаке давали дышать различными газовыми смесями, наибольшее изменение дыхания наблюдалось при увеличении содержания углекислого газа в крови.

Зависимость деятельности дыхательного центра от газового состава крови. Деятельность дыхательного центра, определяющая частоту и глубину дыхания, зависит прежде всего от напряжения газов, растворенных в крови, и концентрации в ней водородных ионов. Ведущее значение в определении величины вентиляции легких имеет напряжение углекислого газа в артериальной крови: оно как бы создает запрос на нужную величину вентиляции альвеол.

Для обозначения повышенного, нормального и сниженного напряжения углекислого газа в крови используют термины «гиперкапния», «нормокапния» и «гипокапния» соответственно. Нормальное содержание кислорода называется нормоксией, недостаток кислорода в организме и тканях - гипоксией , в крови - гипоксемией. Увеличение напряжения кислорода есть гиперксия. Состояние, при котором гиперкапния и гипоксия существуют одновременно, называется асфиксией.

Нормальное дыхание в состоянии покоя называется эйпноэ. Гиперкапния, а также снижение величины pH крови (ацидоз) сопровождаются непроизвольным увеличением вентиляции легких - гиперпноэ , направленным на выведение из организма избытка углекислого газа. Вентиляция легких возрастает преимущественно за счет глубины дыхания (увеличения дыхательного объема), но при этом возрастает и частота дыхания.

Гипокапния и повышение уровня pH крови ведут к уменьшению вентиляции, а затем и к остановке дыхания - апноэ.

Развитие гипоксии вначале вызывает умеренное гиперпноэ (в основном в результате возрастания частоты дыхания), которое при увеличении степени гипоксии сменяется ослаблением дыхания и его остановкой. Апноэ вследствие гипоксии смертельно опасно. Его причиной является ослабление окислительных процессов в мозге, в том числе в нейронах дыхательного центра. Гипоксическому апноэ предшествует потеря сознания.

Гиперкапнию можно вызвать вдыханием газовых смесей с повышенным до 6% содержанием углекислого газа. Деятельность дыхательного центра человека находится под произвольным контролем. Произвольная задержка дыхания на 30-60 с вызывает асфиксические изменения газового состава крови, после прекращения задержки наблюдается гиперпноэ. Гипокапнию легко вызывать произвольным усилением дыхания, а также избыточной искусственной вентиляцией легких (гипервентиляция). У бодрствующего человека даже после значительной гипервентиляции остановки дыхания обычно не возникает вследствие контроля дыхания передними отделами мозга. Гипокапния компенсируется постепенно, в течение нескольких минут.

Гипоксия наблюдается при подъеме на высоту вследствие снижения атмосферного давления, при крайне тяжелой физической работе, а также при нарушении дыхания, кровообращения и состава крови.

Во время сильной асфиксии дыхание становится максимально глубоким, в нем принимают участие вспомогательные дыхательные мышцы, возникает неприятное ощущение удушья. Такое дыхание называют диспноэ.

В целом поддержание нормального газового состава крови основано на принципе отрицательной обратной связи. Так, гиперкапния вызывает усиление активности дыхательного центра и увеличение вентиляции легких, а гипокапния - ослабление деятельности дыхательного центра и уменьшение вентиляции.

Рефлекторные влияния на дыхание с сосудистых рефлексогенных зон. Дыхание особенно быстро реагирует на различные раздражения. Оно быстро изменяется под влиянием импульсов, приходящих с экс- теро- и интерорецепторов к клеткам дыхательного центра.

Раздражителем рецепторов могут быть химические, механические, температурные и другие воздействия. Наиболее ярко выраженным механизмом саморегуляции является изменение дыхания под влиянием химического и механического раздражения сосудистых рефлексогенных зон, механического раздражения рецепторов легких и дыхательных мышц.

Синокаротидная сосудистая рефлексогенная зона содержит рецепторы, чувствительные к содержанию углекислого газа, кислорода и водородных ионов в крови. Это отчетливо показано в опытах Гейманса с изолированным каротидным синусом, который отделяли от сонной артерии и снабжали кровью от другого животного. С ЦНС каротидный синус был соединен только нервным путем - сохранился нерв Геринга. При повышении содержания углекислого газа в крови, омывающей каротидное тельце, возникает возбуждение хеморецепторов этой зоны, вследствие чего увеличивается количество импульсов, идущих к дыхательному центру (к центру вдоха), и наступает рефлекторное увеличение глубины дыхания.


Рис. 6.8.

К - кора; Гт-гипоталамус; Пвц - пневмотаксический центр; Апц - центр дыхания (экспираторный и инспираторный); Ксин - каротидный синус; Бн - блуждающий нерв;

См - спинной мозг; С 3 -С 5 - шейные сегменты спинного мозга; Дфн - диафрагмальный нерв; ЭМ - экспираторные мышцы; ИМ - инспираторные мышцы; Мнр - межреберные нервы; Л - легкие; Дф - диафрагма; 77), - 77) 6 - грудные сегменты спинного мозга

Увеличение глубины дыхания наступает и при воздействии углекислого газа на хеморецепторы аортальной рефлексогенной зоны.

Такие же изменения дыхания наступают при раздражении хеморецепторов названных рефлексогенных зон кровью с повышенной концентрацией водородных ионов.

В тех же случаях, когда в крови увеличивается содержание кислорода, раздражение хеморецепторов рефлексогенных зон уменынается, вследствие чего ослабевает поток импульсов к дыхательному центру и наступает рефлекторное уменьшение частоты дыхания.

Рефлекторным возбудителем дыхательного центра и фактором, влияющим на дыхание, является изменение АД в сосудистых рефлексогенных зонах. При повышении АД раздражаются механорецепторы сосудистых рефлексогенных зон, вследствие чего наступает рефлекторное угнетение дыхания. Уменьшение величины АД приводит к увеличению глубины и частоты дыхания.

Рефлекторные влияния на дыхание с механорецепторов легких и дыхательных мышц. Существенным фактором, вызывающим смену вдоха и выдоха, являются влияния с механорецепторов легких, что впервые было обнаружено Герингом и Брейером (1868). Они показали, что каждый вдох стимулирует выдох. Во время вдоха при растяжении легких раздражаются механорецепторы, расположенные в альвеолах и дыхательных мышцах. Возникшие в них импульсы по афферентным волокнам блуждающего и межреберных нервов приходят к дыхательному центру и вызывают возбуждение экспираторных и торможение инспираторных нейронов, вызывая смену вдоха на выдох. Это один из механизмов саморегуляции дыхания.

Подобно рефлексу Геринга-Брейера, осуществляются рефлекторные влияния на дыхательный центр от рецепторов диафрагмы. Во время вдоха в диафрагме при сокращении ее мышечных волокон раздражаются окончания нервных волокон, возникающие в них импульсы поступают в дыхательный центр и вызывают прекращение вдоха и возникновение выдоха. Этот механизм имеет особенно большое значение при усиленном дыхании.

Рефлекторные влияния на дыхание с различных рецепторов организма. Рассмотренные рефлекторные влияния на дыхание относятся к постоянно действующим. Но существуют различные кратковременные воздействия почти со всех рецепторов нашего организма, которые влияют на дыхание.

Так, при действии механических и температурных раздражителей на экстерорецепторы кожи наступает задержка дыхания. При действии холодной или горячей воды на большую поверхность кожи возникает остановка дыхания на вдохе. Болевое раздражение кожи вызывает резкий вдох (вскрикивание) с одновременным закрытием голосовой щели.

Некоторые изменения акта дыхания, возникающие при раздражении слизистых оболочек дыхательных путей, получили название защитных дыхательных рефлексов: кашель, чихание, задержка дыхания, наступающая при действии резких запахов, и др.

Роль коры больших полушарий головного мозга в регуляции дыхания.

Дыхание - одна из вегетативных функций, которая имеет произвольную регуляцию. Каждый человек может произвольно изменить ритм и глубину дыхания, задержать его на определенное время (от 20-60 до 240 с). Возможность произвольного изменения дыхания свидетельствует о регулирующем влиянии коры больших полушарий на данную функцию (рис. 6.9 ).


Рис. 6.9.

Яркие доказательства корковой регуляции дыхания получены методом условных рефлексов. Условный дыхательный рефлекс можно выработать на действие любого внешнего раздражителя, если сочетать его с каким-нибудь безусловным дыхательным рефлексом.

Г.П. Конради и З.П. Бабешкина в качестве безусловного раздражителя использовали вдыхание газовой смеси с повышенным содержанием углекислого газа (при этом возрастает легочная вентиляция). Вдыханию смеси предшествовал звук метронома на 5-10 с. После

10-15 сочетаний вдыхания смеси и звука метронома один звук метронома (без вдыхания смеси) вызывал увеличение легочной вентиляции.

Предстартовое изменение дыхания у спортсменов также является показателем его условно-рефлекторной регуляции. Ее значение в данном случае заключается в приспособлении организма к повышенной физической нагрузке, требующей увеличения газообмена. Предстартовое изменение (увеличение) глубины и частоты дыхания (одновременно с изменением деятельности сердечно-сосудистой системы) обеспечивает более быструю доставку кислорода к работающим мышцам и удаление из крови углекислого газа.

Регуляция дыхания сформировалась у человека в процессе эволюции в связи с формированием речи. Произношение осуществляется на выдохе, поэтому для осуществления речи необходимо менять глубину и ритм дыхания, благодаря чему можно достигать декламации, пения и т.д.

Вопросы и задания

  • 1. Перечислите легочные объемы и емкости. В чем разница? Ответ поясните.
  • 2. Какова роль больших полушарий головного мозга в регуляции дыхания?
  • 3. Один человек утверждает, что легкие расширяются и потому в них входит воздух, а другой - что воздух входит в легкие и поэтому они расширяются. Кто прав?
  • 4. На собаках проведены эксперименты: 1) перерезка между шейным и грудным отделами спинного мозга; 2) перерезка между продолговатым и спинным мозгом. Какие изменения дыхания будут наблюдаться в данных экспериментах?
  • 5. Хорошие пловцы, перед тем как нырнуть, в течение нескольких секунд форсированно дышат. Для чего они так делают? Каков механизм изменения дыхания в этом случае?
  • 6. Существуют экспериментальные установки, позволяющие животным (кошка, собака, крыса) «дышать водой», насыщенной кислородом. Установка полностью удовлетворяет потребность животного в кислороде. Почему все же животные через некоторое время умирают, а человек вообще не может «дышать водой»? Объясните это, используя закон Бернулли о разности давлений и вязкости среды, а также данные о растворимости газов в водной и воздушной среде.
  • 7. Может ли опыт Фредерика с перекрестным кровообращением у двух собак считаться безупречным для доказательства гуморальных механизмов влияния избытка С0 2 или недостатка 0 2 в крови на дыхательный центр? Поясните.
  • См.: Леонтьева Н.Н, Маринова К.В. Указ. соч.
  • См.: Резанова, Е.Л., Антонова, И.П., Резанов, А.А. Указ. соч.

Для поддержания газового состава альвеол (удаления углекислого газа и поступления воздуха, содержащего достаточное количество кислорода) необходима вентиляция альвеолярного воздуха. Она достигается благодаря дыхательным движениям: чередованию вдоха и выдоха. Сами легкие не могут нагнетать или изгонять воздух из альвеол. Они лишь пассивно следуют за изменением объема грудной полости за счет отрицательного давления в плевральной полости. Схема дыхательных движений представлена на рис. 5.9.

Рис. 5.9.

При вдохе диафрагма опускается вниз, отодвигая органы брюшной полости, а межреберные мышцы поднимают грудную клетку вверх, вперед и в стороны. Объем грудной полости увеличивается, и легкие следуют за этим увеличением, поскольку содержащиеся в легких газы прижимают их к пристеночной плевре. Вследствие этого давление внутри легочных альвеол падает и наружный воздух поступает в альвеолы.

Выдох начинается с того, что межреберные мышцы расслабляются. Под действием силы тяжести грудная стенка опускается вниз, а диафрагма поднимается вверх, поскольку стенка живота давит на внутренние органы брюшной полости, а они своим объемом поднимают диафрагму. Объем грудной полости уменьшается, легкие сдавливаются, давление воздуха в альвеолах становится выше атмосферного, и часть его выходит наружу. Все это происходит при спокойном дыхании. При глубоком вдохе и выдохе включаются дополнительные мышцы.

Нервная регуляция дыхания

Дыхательный центр расположен в продолговатом мозге. Он состоит из центров вдоха и выдоха, которые регулируют работу дыхательных мышц. Спадение легочных альвеол, которое происходит при выдохе, рефлекторно активизирует центр вдоха, а расширение альвеол рефлекторно активизирует центр выдоха – таким образом дыхательный центр функционирует постоянно и ритмично. Автоматизм дыхательного центра обусловлен особенностями метаболизма в его нейронах. Возникающие в дыхательном центре импульсы по центробежным нервам достигают дыхательных мышц, вызывая их сокращение и, соответственно, обеспечивая вдох.

Особое значение в регуляции дыхания имеют импульсы, идущие от рецепторов дыхательных мышц и от рецепторов самих легких. От их характера в большой степени зависит глубина вдоха и выдоха. Физиологический механизм регуляции дыхания построен по принципу обратной связи: при вдохе легкие растягиваются и в рецепторах, расположенных в стенках легких, возникает возбуждение, которое по центростремительным волокнам блуждающего нерва достигает дыхательного центра и затормаживает активность нейронов центра вдоха, при этом в центре выдоха по механизму обратной индукции возникает возбуждение. В результате дыхательные мышцы расслабляются, грудная клетка уменьшается и происходит выдох. По такому же механизму выдох стимулирует вдох.

При задержке дыхания мышцы вдоха и выдоха сокращаются одновременно, вследствие чего грудная клетка и диафрагма удерживаются в одном положении. На работу дыхательных центров оказывают влияние и другие центры, в том числе расположенные в коре больших полушарий. Благодаря их влиянию можно сознательно изменять ритм дыхания, задерживать его, управлять дыханием при разговоре или пении.

При раздражении органов брюшной полости, рецепторов кровеносных сосудов, кожи, рецепторов дыхательных путей дыхание изменяется рефлекторно. Так, при вдыхании наров аммиака раздражаются рецепторы слизистой оболочки носоглотки, что вызывает активизацию акта дыхания, а при высокой концентрации паров – рефлекторную задержку дыхания. К этой же группе рефлексов относятся чихание и кашель – защитные рефлексы, служащие для удаления инородных частиц, попавших в дыхательные пути.

Гуморальная регуляция дыхания

При мышечной работе усиливаются процессы окисления, что приводит к повышению содержания углекислого газа в крови. Избыток углекислого газа повышает активность дыхательного центра, дыхание становится более глубоким и частым. В результате интенсивного дыхания восполняется недостаток кислорода, а избыток углекислого газа удаляется. Если концентрация углекислого газа в крови понижается, работа дыхательного центра тормозится и наступает непроизвольная задержка дыхания. Благодаря нервной и гуморальной регуляции концентрация углекислого газа и кислорода в крови в любых условиях поддерживается на определенном уровне.

Как и все системы в организме, дыхание регулируется двумя основными механизмами – нервным и гуморальным.

Основой нервной регуляции является реализация рефлекса Геринга –Бреера, который по сути, состоит из серии последовательно в процессе дыхания сменяющихся друг друга рефлексов, подобно описанных различных учебниках по физиологии. Здесь отметим, что все рефлексы могут быть объединены как один, суть которого заключается в следующем: вдох, выдох стимулирует вдох.

Смене дыхательных фаз способствуют сигналы, поступающие от механорецепторов легких по афферентным волокнам блуждающих нервов. Импульсы, поступающие от рецепторов легких, обеспечивают смену вдоха на выдох и смену выдоха вдохом (рис.7)

Рис.7. Схема, отражающая основные процессы саморегуляции вдоха и выдоха.

И – совокупность инспираторных нейронов, обеспечивающих вдох; И п – инспираторные поздние нейроны, прерывающие вдох: светлые – возбуждающие, темные – тормозящие.

В эпителиальном и субэпителиальном слоях всех воздухоносных путей, а также в области корней легких расположены так называемые ирритантные рецепторы , которые обладают одновременно свойствами механо- и хеморецепторов. Они раздражаются при сильных изменениях объема легких. Ирритантные рецепторы возбуждаются также под действием пылевых частиц, паров едких веществ и некоторых биологически активных веществ, например, гистамина. Однако для регуляции смены вдоха и выдоха большее значение имеют рецепторы чувствительные к растяжению легких (механическое раздражение).

В продолговатом мозге нейроны, ответственные за ритмическую смену актов вдоха и выдоха, формируют несколько ядер дорсальной и вентральной групп, среди которых последняя имеет большее значение в реализации рефлекса Геринга – Бреера. Условно все ядра вентральной и дорсальной групп можно объединить общим названием дыхательного центра (ДЦ). Нейроны дыхательного центра продолговатого мозга как бы разделены на две группы. Одна группа нейронов дает волокна к мышцам, которые обеспечивают вдох, эта группа нейронов получила название инспираторных нейронов (инспираторный центр, ИЦ), т. е. центр вдоха. Другая же группа нейронов, отдающих волокна к внутренним межреберным и межхрящевым мышцам, получила название экспираторных нейронов (экспираторный центр, ЭЦ), т. е. центр выдоха. Нейроны экспираторного и инспираторного отделов дыхательного центра продолговатого мозга обладают различной возбудимостью и лабильностью. Возбудимость инспираторного отдела выше. Кроме того ИЦ обладает выраженной автоматией.

Вдох начинается с возбуждения ИЦ, которое во многом обеспечивается автоматическими процессами в нем. Импульсация по нисходящей поступает по мотонейронам спинного мозга, аксоны, которых составляют диафрагмальный, наружные межреберные и межхрящевые нервы, иннервирующие основные мышцы вдоха. Сокращение этих мышц увеличивает размер грудной клетки, воздух поступает в альвеолы, растягивая их. Чем глубже происходит вдох, тем в большей степени активируются рецепторы легкого. Частота афферентации от них нарастает, направляясь в ЭЦ, который возбуждается. Возбуждение ЭЦ наводит торможение на ИЦ, моторная импульсация от него к мышцам вдоха прекращается, которые расслабляются. Происходит пассивный, под действием силы тяжести, выдох. Т.о. вдох стимулирует выдох.

При выдохе паренхима легкого спадается, прекращается активация ее механорецепторов, значит, исчезает афферентация к ЭЦ. Возбуждение ЭЦ прекращается и он перестает наводить торможение на ИЦ. В последнем нарастают автоматические процессы, и он возбуждается. Начинается новый акт вдоха, т.е. выдох стимулирует вдох.

Конечно, формирования стволовыми структурами паттерна дыхания, здесь описанного Люмсденом (1920), приводится здесь в упрощенном виде. В действительности дыхательные нейроны продолговатого мозга формируют несколько вентральных и дорсальных групп, ответственных за генерацию различного типа моторной импульсации в разные моменты (начало – конец), как вдоха, так и выдоха. Представляется нецелесообразным подробное изложение в настоящем издании современных представлений о механизмах дыхательного ритмогенеза. Подчеркнем лишь, что два основных свойства дыхательного центра, обеспечивающих реализацию рефлекса Геринга – Бреера – это автоматия и реципрокность. Способность самовозбуждаться присутствует не только в инспираторных нейронах, как это описано выше, но и в ЭЦ. Кроме того, как ЭЦ, способен наводить торможение на ИЦ, так и наоборот. Между этими двумя группами дыхательных нейронов существуют антогонистические (реципрокные) взаимоотношения.

Кроме того, обратим внимание, что дыхательный центр, расположенный в продолговатом мозге, способен формировать ритм внешнего дыхания посредством нервного (рефлекторного) механизма. Однако, известно, что интенсивность дыхания в большей степени зависит и от гуморальных факторов, например, кислотности крови, а также может быть изменена произвольно.

Значительный вклад в изучение данных механизмов был сделан отечественным физиологом Н.А. Миславским, на основе работ которого можно ввести понятие центрального механизма регуляции дыхания (рис.8)

Рис.8. Дыхательный центр (его компоненты) и эфферентные нервы.

К – кора; Гт – гипоталамус; Пм – продолговатый мозг; См – спинной мозг; Тh 1 - Тh 6 – грудной отдел спинного мозга; С 3 – С 5 – шейный отдел спинного мозга.

Центральный механизм регуляции дыхания (ЦМРД) – это вся совокупность ядер головного мозга, участвующих в формирования ритма и глубины дыхательных движений. Основными элементами ЦМРД являются ДЦ продолговатого мозга, пневмотоксический центр (ПТЦ) среднего мозга, кора больших полушарий (КГМ).

Дыхательный центр продолговатого мозга испытывает влияния со стороны вышележащих отделов ЦНС. Так, например, в передней части варолиева моста расположен ПТЦ, который способствует периодической деятельности дыхательного центра, он увеличивает скорость развития инспираторной активности, повышает возбудимость механизмов выключения вдоха, ускоряет наступление следующей инспирации. Другими словами, ПТЦ интенсивно обменивается возбуждающей и тормозной импульсацией с инспираторными и экспираторными нейронами продолговатого мозга. ПТЦ повышает или понижает возбудимость ДЦ, изменяя, тем самым, внешнее дыхание

По современным представлениям возбуждение клеток инспираторного отдела продолговатого мозга активирует деятельность апноэстического и пневмотаксического центров . Апноэстический центр тормозит активность экспираторных нейронов, пневмотаксический - возбуждает. По мере усиления возбуждения инспираторных нейронов под влиянием импульсации от механо- и хеморецепторов усиливается активность пневмотаксического центра. Возбуждающие влияния на экспираторные нейроны со стороны этого центра к концу фазы вдоха становятся преобладающими над тормозными, приходящими со стороны апноэстического центра. Это приводит к возбуждению экспираторных нейронов, оказывающих тормозящие влияния на инспираторные клетки. Вдох тормозится, начинается выдох .

Существует самостоятельный механизм торможения вдоха и на уровне продолговатого мозга. К этому механизму относят специальные нейроны (I бета), возбуждаемые импульсами от механорецепторов растяжения легких и инспираторно-тормозные нейроны, возбуждаемые активностью нейронов I бета. Таким образом, при увеличении импульсации от механорецепторов легких увеличивается активность I бета нейронов, что в определенный момент времени (к концу фазы вдоха) вызывает возбуждение инспираторно-тормозных нейронов. Их активность тормозит работу инспираторных нейронов. Вдох сменяется выдохом.

Активность ПТЦ, зависит от многих факторов:

Во – первых, ПТЦ получает афферентацию от различны органов и ситем организма: рецепторов паренхимы легкого, сосудистых рефлексогенных зон, других рецептивных полей.

Во вторых, ПТЦ имеет собственные центральные хеморецепторы, чувствительные к изменению кислотности и газового состава ликвора. Таким образом, гуморальная регуляция внешнего дыхания осуществляется во многом благодаря ПТЦ.

В – третьих, ПТЦ, находится в тесном взаимодействии с КГМ и под ее контролем, чем обеспечивается произвольная регуляция дыхания.

Если произвести перерезку путей, соединяющих ПТЦ, с КГМ, то внешнее дыхание практически не изменится. У животного в полном объеме сохраниться возможность адаптации интенсивности дыхания к меняющимся условиям существования, которая будет осуществляться по безусловно рефлекторному типу с участием ПТЦ и ДЦ. Однако, произвольная регуляция окажется невозможной, например, будет происходить задержки дыхания при погружении головы в воду.

Если затем произвести перерезку ствола мозга ниже мезенцефального отдела (средний мозг), выключив, тем самым, ПТЦ, то внешнее дыхание сохранится, но изменится значительно (рис.9)

Рис.9 Влияние на дыхание перерезок на разных уровнях головного и спинного мозга.

А – характер дыхательных движений, В – уровни перерезок.

Оно будет состоять из чередующихся фаз глубоких вдоха и выдоха, т.е. будет реализовываться только в соответствии с рефлексом Геринга – Бреера. При этом гуморальная регуляция окажется практически невозможной, например, закисление крови не будет приводить к увеличению глубины дыхания.

Наконец, полное отсечение головного мозга от спинного приводит к остановке дыхания.

В регуляции дыхания большое значение имеют центры гипоталамуса . Под влиянием центров гипоталамуса происходит усиление дыхания, например, при болевых раздражениях, при эмоциональном возбуждении, при физической нагрузке.

Говоря о гуморальной регуляции внешнего дыхания, следует отметить, что деятельность дыхательного центра в значительной степени зависит от напряжения газов в крови и концентрации в ней водородных ионов. Ведущее значение в определении величины легочной вентиляции имеет напряжение углекислого газа в артериальной крови, оно как бы создает запрос на нужную величину вентиляции альвеол.

Содержание кислорода и особенно углекислого газа поддерживается на относительно постоянном уровне. Нормальное содержание кислорода в организме называется нормоксия , недостаток кислорода в организме и тканях - гипоксия, а недостаток кислорода в крови - гипоксиемия. Увеличение напряжения кислорода в крови называется гипероксия . Нормальное содержание углекислого газа в крови называется нормокапния , повышение содержания углекислого газа - гиперкапния , а снижение его содержания - гипокапния.

Нормальное дыхание в состоянии покоя называется эйпноэ. Гиперкапния, а также снижение величины рН крови (ацидоз) сопровождаются увеличением вентиляции легких - гиперпноэ , что приводит к выделению из организма избытка углекислого газа, увеличение вентиляции легких происходит за счет увеличения глубины и частоты дыхания.

Гипероксия, гипокапния и повышение уровня рН крови приводит к уменьшению вентиляции легких, а затем и к остановке дыхания - апноэ .

Деятельность ДЦ зависит от состава крови, поступающей в мозг по общим сонным артериям. В 1901 г. это было показано Л.Фредериком опытах с перекрестным кровообращения. У двух собак, находившихся под наркозом, перерезали и соединяли перекрестно сонные артерии и яремные вены. При этом голова первой собаки снабжалась кровью второй собаки, и наоборот. Если у одной из собак, например, первой, перекрывали трахею и таким путем вызывали асфиксию, то гиперпноэ развивалось у второй собаки. У первой же собаки, несмотря на увеличение в артериальной крови напряжение СО 2 и снижение О 2 , развивалось апноэ, так как в ее сонную артерию поступала кровь второй собаки, у которой в результате гипервентиляции снижалось напряжение СО 2 в артериальной крови (рис.10)

Рис.10. Опыт с перекрестным кровообращением (по Л. Фредерику)

Двуокись углерода, водородные ионы и умеренная гипоксия вызывают усиление дыхания. Эти факторы усиливают деятельность дыхательного центра, оказывая влияние на периферические и центральные хеморецепторы, регулирующие дыхание.

Роль рефлексогенных зон в регуляции дыхания .

Хеморецепторы, чувствительные к увеличению напряжения углекислого газа и к снижению напряжения кислорода находятся в каротидных синусах и дуге аорты. Большее значение для регуляции дыхания имеют каротидные хеморецепторы. При нормальном содержании кислорода в артериальной крови в афферентных нервных волокнах, отходящих от каротидных телец, регистрируются импульсы. При снижении напряжения кислорода частота импульсов возрастает особенно значительно, т.к. гипоксия оказывает на артериальные хеморецепторы стимулирующее влияние. Кроме того, афферентные влияния с каротидных телец усиливаются при повышении в артериальной крови напряжения углекислого газа и концентрации водородных ионов. Хеморецепторы каротидных телец, информируют дыхательный центр о напряжении О 2 и СО 2 в крови, которая направляется к мозгу.

Дыхание зависит от рефлекторных влияний с сосудистых рефлексогенных зон, и в частности с барорецепторов зоны позвоночных артерий (ЗПА). В частности ЗПА вызывает сочетанные изменения дыхания и системиного артериального давления.

Центральные хеморецепторы расположены в продолговатом мозге, они постоянно стимулируются водородными ионами, находящимися в спиномозговой жидкости. Перфузия этой области мозга раствором со сниженным рН резко усиливает дыхание, а при высоком рН дыхание ослабевает, вплоть до апноэ. То же происходит при охлаждении или обработке этой поверхности продолговатого мозга анестетиками. Центральные хеморецепторы, оказывая сильное влияние на деятельность дыхательного центра, существенно изменяют вентиляцию легких.

Центральные хеморецепторы реагируют на изменение напряжения СО 2 в артериальной крови позже, чем периферические хеморецепторы, так как для диффузии СО 2 из крови в спинномозговую жидкость и далее в ткань мозга необходимо больше времени. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз – тормозят центральные хеморецепторы.

Импульсы, поступающие от центральных и периферических хеморецепторов, являются необходимым условием периодической активности нейронов дыхательного центра и соответствия вентиляции легких газовому составу крови.

Своеобразие функции внешнего дыхания состоит в том, что она одновременно и автоматически, и произвольно управляемая.

Кислород, являющийся конечным акцептором электронов в дыхательной цепи, необходимо доставить в организме к каждой клетке. У животных выработались системы внешнего дыхания, функцией которых и является газообмен. В курсе зоологии получены исчерпывающие сведения на этот счет.

Дыхание – это совокупность процессов и механизмов, обеспечивающих потребление кислорода и выделение избытка углекислого газа организмом, и направленных на поддержание газового гомеостазиса.

Функции и этапы дыхания.

Функции системы дыхания

1.газообмен между клетками организма и окружающей средой

2.выделение летучих соединений

3.депонирование крови

С точки зрения физики газообмен происходит с использованием конвекции (перемещение молекул на большие расстояния с током воздуха и крови) и диффузии (движение газов по градиенту парциального давления на небольшие расстояния).

Этапы (стадии) дыхания

1.Газообмен между внешней средой и альвеолярным воздухом (конвекция)

2.Газообмен между альвеолярным воздухом и кровью (диффузия)

3.Транспорт газов кровью по малому и большому кругу кровообращения (конвекция)

4.Газообмен в тканях (диффузия)

5.Клеточное дыхание (изучает биохимия)

Газообмен в легких происходит благодаря ритмичным дыхательным движениям, инспирации (вдох) и экспирации (выдох). Длительность фазы вдоха и выдоха при различных нагрузках на организм меняется, поэтому введено понятие о паттерне дыхания.

Паттерн дыхания – это совокупность объемных и временных параметров, характеризующих структуру дыхательного цикла и легочную вентиляцию в целом.

Параметры дыхания.

1.Количество дыхательных циклов в 1 минуту. Частота дыхания.

2.Длительность одного дыхательного цикла.

3.Длительность инспираторной и экспираторной фазы.

4.Дыхательный объем или глубина дыхания.

5.Легочная вентиляция (минутный объем дыхания)

Выделяют

    нормопноэ , или нормопноическое дыхание, (12-16 дыхательных циклов в мин);

    тахипноэ (частое, но неглубокое дыхание, более 20 циклов в минуту);

    брадипноэ (медленное, глубокое дыхание, менее 8 вдохов-выдохов в минуту

Рабочее гиперпноэ может наблюдаться при мышечной нагрузке.

Необходимую для организма интенсивность альвеолярной вентиляции можно обеспечить при различных паттернах дыхания, частоты и глубины его.

Чем больше дыхательный объем, тем большее усилие необходимо приложить для преодоления эластичной тяги легких, т.е. при таком дыхании большая нагрузка ложится на вдыхательные мышцы. С другой стороны, при частом поверхностном дыхании нагрузка на дыхательную мускулатуру возрастает из-за сопротивления току воздуха в воздухоносных путях.

При физиологической одышке может быть частое поверхностное дыхание, встречается такой паттерн дыхания при повышенной температуре воздуха и гипертермии. Газообмен в этом случае происходит только в пределах мертвого пространства, отчего обмен кислорода и диоксида углерода в альвеолах снижен.

Кроме указанных, различают понятия гиперпноэ и гипервентиляция легких, в первом случае газообмен в альвеолах нормален, во втором происходит «вымывание» СО 2 из альвеол, и из крови, наступаетгипокапния. При гиповентиляции наблюдаетсягиперкапния , избыток углекислоты в крови или альвеолярном газе.

Недостаток кислорода обозначается как гипоксия , недостаток кровоснабжения в тканях –ишемия .

Дыхательные движения обеспечиваются работой дыхательных мышц.

Исполнительными (эффекторными) образованиями системы дыхания у человека являются инспираторные и экспираторные мышцы. При сокращении инспираторных мышц объем грудной клетки увеличивается за счет поднятия ребер и уплощения диафрагмы. Основные инспираторы – наружные межреберные мышцы и диафрагма. При вдохе межреберные мышцы подтягивают нижележащие ребра вверх, диафрагма опускается книзу. При глубоком вдохе дополнительно в акт включаются грудино-ключично-сосцевидная и трапециевидная мышцы.

Основные экспираторы – внутренние межреберные мышцы, вспомогательные – мышцы живота. Они способствуют опусканию ребер, а также способствуют пассивному смещению диафрагмы при выдохе.

Грудная клетка герметична. С внутренней стороны она выстлана париетальной плеврой. Между тканью легкого (покрытой висцеральной плеврой) и париетальной плеврой имеется плевральная полость, заполненная плевральной жидкостью.

Клетки париетальной плевры фильтруют до 300 мл плевральной жидкости в час. Висцеральная плевра эту жидкость адсорбирует, причем более активно, чем она секретируется. Этим создаются условия для отрицательного (относительно атмосферного) давления в плевральной полости.

Ткань легкого эластична и стремится занять как можно меньший объем. Поэтому растяжение легких происходит за счет распирающего давления атмосферы, атмосферное давление прижимает легкие к париетальной плевре. Нарушение герметичности грудной клетки носит название пневмоторакса .

Таким образом, периодические экскурсии грудной клетки «затягивают» дыхательную порцию воздуха в трахею и далее в легкие, при условии отрицательного давления в плевральной полости.

Воздухопроводящий путь включает носоглотку, трахею, бронхи, 23 поколения которых составляют бронхиальное дерево.

Кондуктивную зону с общим объемом 130-180 мл состаляют первые 16 поколений бронхов, это анатомическое мертвое пространство, названное так потому, что здесь газообмен с кровью не происходит.

Транзиторная зона , 17-19 ветвления бронхов, может содержать альвеолярные ходы.

Респираторная зона бронхиального дерева включает 20-23-е разветвления бронхов. Бронхи образуют альвеолярные бронхиоли и альвеолы.

Функциональной единицей легких являются дольки. Наиболее мелкие бронхиоли входят в дольку и делятся здесь на 12-18 концевых бронхиолей, те образуют альвеолярные бронхиоли и ацинусы, состоящие из альвеол. Число альвеол у человека варьирует от 300 до 700 миллионов. Общая поверхность доходит до 100-130 кв. метров. Альвеолы густо оплетены капиллярами, куда поступает венозная кровь из легочных артерий, а оксигенированная кровь затем отводится из легочного круга кровообращения по легочным венам в левое предсердие.

Особенности нормальной легочной циркуляции крови заключаются в том, что она обладает низким сосудистым сопротивлением и способна аккумулировать весь минутный объем кровотока, создаваемый правым желудочком сердца. Давление в легочной артерии в фазу систолы равно 20-30 мм рт.ст. Объем крови в легких может составлять до 28% от всей циркулирующей в организме. Только за счет емкостных свойств легочные сосуды могут воспринимать весь кровоток, повышающийся при физической нагрузке, без изменений давления.

Альвеолярный эпителий (респираторный) на поверхности покрыт вырабатывающимся в нем специальным веществом фосфолипопротеиновой природы – сурфактонтом . Пленка сурфактанта уменьшает поверхностное натяжение альвеолярной стенки, что препятсвует слипанию альвеол. Сурфактант постоянно вырабатывается разновидностью эпителиальных клеток – гранулярными пневмоноцитами под контролем блуждающих нервов.

Легочные объемы.

В условиях покоя человек дышит так, что используется только часть всего объема легких, поэтому всегда есть резерв для дополнительного вдоха и выдоха. Но даже при самом глубоком дыхании в легких остается определенное количество воздуха, составляющее остаточный объем .

Общая емкость легких =резервный объем вдоха (2,5 л)+дыхательный объем (500-700 мл)+ резервный объем выдоха (1,5 л) + остаточный объем (1,5 л) =3,5…6 л.

Дыхательный объем – объем воздуха, который входит в легкие при каждом спокойном вдохе и выходит при спокойном выдохе.

Резервные объемы вдоха и выдоха – объемы воздуха, которые человек может произвольно вдохнуть и выдохнуть сверх дыхательного объема.

Жизненная емкость легких – количество воздуха, которое может выдохнуть человек после глубокого вдоха. Она равна сумме дыхательного объема, резервных объемов вдоха и выдоха.

Легочная вентиляция всегда находится в точном соответствии с текущими метаболическими потребностями организма. Увеличение вентиляции происходит как за счет роста дыхательного объема, так и увеличением частоты дыхания.

Не весь воздух, поступающий в легкие, участвует в газообмене, анатомическое мертвое пространство соответствует (в мл) цифре удвоенной массы тела. Функциональное мертвое пространство дополнительно снижает степень газообмена.

Газ в альвеолах имеет постоянный состав, обусловленный буферными функциями мертвого пространства, где воздух увлажняется и нагревается.

В условиях покоя оптимальным является дыхание через нос, хотя при этом сопротивление дыханию возрастает по сравнению с дыханием через рот.

При осуществлении дыхательных движений дыхательные мышцы совершают работу, затрачиваемую на преодоление внутренних и внешних сил. Работа дыхания складывается из энергозатрат на преодоление общего легочного сопротивления (эластичного сопротивления самой легочной ткани и грудной клетки) и преодоления сопротивления потоку воздуха в воздухоносных путях.

Минутному объему дыхания должен соответствовать минутный объем крови, протекающий по сосудам малого круга кровообращения. Вентиляционно-перфузионный коэффициент составляет 0,8-0,9, т. е. при альвеолярной вентиляции, равной 6 л/мин, минутный объем кровообращения может быть равным 7 л/мин.

В атмосфере Земли кислород составляет примерно 21%, или 1/5. Атмосферное давление на уровне моря 760 мм рт.ст. Значит, парциальное давление кислорода примерно соответствует 1/5 этой величины, 160 мм рт.ст., это предельная цифра содержания О 2 в естественных газовых смесях.

В воздухоносных путях воздух постепенно теряет скорость перемещения (конвекции). В респираторных бронхиолях и альвеолах большое значение приобретает диффузия газов. Газы перемещаются по градиенту парциального давления. В альвеолах, где и происходит, контакт альвеолярного газа с капиллярной кровью, напряжение кислорода Р О 2 составляет 103 мм рт.ст., а парциальное давление диоксида углерода Р СО 2 около 40 мм рт.ст. В выдыхаемом воздухе Р О 2 составляет 126 мм рт.ст., а Р СО 2 соответственно 16 мм рт.ст. В артериальной крови Р О 2 соответствует 95 мм рт.ст., в венозной Р О 2 равно 40 мм рт.ст. Р СО 2 артериальной крови соответствует 40 мм рт.ст., а венозной – Р СО 2 приближается к 46 мм рт.ст.

Вектор диффузии дыхательных газов

Поэтому вектор диффузии кислорода постоянно направлен в сторону альвеол и капилляров, а углекислоты – в обратном направлении, из капилляров в атмосферу.

Перенос кислорода из альвеолярного газа в кровь и диоксида углерода из крови в альвеолярный газ происходит исключительно путем диффузии. Движущей силой диффузии диффузии служит градиент парциального давления каждого из газов по обе стороны аэрогематического барьера. Диффузия осуществляется в водной среде. В слое сурфактанта растворимость кислорода повышается.

Аэрогематический барьер состоит из слоя сурфактанта, альвеолярного эпителия, двух основных мембран, эндотелия капилляра и мембраны эритроцита.

Диффузионная способность легких для кислорода достаточно высока. Установлено, что на каждый миллиметр ртутного столба градиента парциального давления кислорода между альвеолярным газом и эритроцитом в кровь поступает путем диффузии 25 мл кислорода в минуту. Этого достаточно для того, чтобы за 0,8 с, что равно времени прохождения отдельным эритроцитом одного легочного капилляра, парциальное давление кислорода в нем успело выравняться с альвеолярным. Даже с большим запасом по времени, поскольку для выравнивания напряжения кислорода в эритроцитах с альвеолярным воздухом достаточно 0,25 с.

Поэтому, если кровоток в капиллярах легких повышается (возрастает линейная скорость движения эритроцитов) при физической нагрузке на организм, и время прохождения капилляров клетками уменьшается до 0,3 с, этого оказывается вполне достаточно для полного газообмена. Для диффузии из крови углекислого газа необходимо всего 0,1 с. Растворимость диоксида углерода в воде превышает этот показатель для кислорода в 25 раз.

Транспорт кислорода кровью.

Если животное имеет систему кровообращения, в крови имеется переносчик кислорода. В растворенном состоянии у человека в артериальной крови имеется только 2% кислорода.

Все пигменты – переносчики кислорода представляют собой металлорганические соединения, большинство содержит Fe, некоторые Cu.

Гемоглобины представляют собой железопорфирины (гем), связанные с глобином (белком). Гемоглобин у человека и млекопитающих всегда находится в специализированных клетках крови эритроцитах. Установлено более 90 типов гемоглобинов, отличающихся белковыми составляющими. Молекула гемоглобина состоит из нескольких мономеров, каждый из которых содержит один гем, соединенный с глобином. У человека гемоглобин содержит 4 таких мономера. Миоглобин содержит только 1 гем.

Гем в химическом отношении представляет собой протопорфирин, состоящий из 4 пиррольных колец с атомом железа в центре.

Оксигенация гемоглобина представляет собой обратимое присоединение кислорода к закисному (двухвалентному) железу в количествах, зависящих от напряжения кислорода в окружающем пространстве.

Кислород присоединяется к каждому из атомов железа согласно уравнению равновесия

Формально в этой реакции не происходит изменения валентности железа. Тем не менее оксигенация сопровождается частичным переходом электрона от закисного железа к кислороду, кислород частично восстанавливается.

Иное значение валентности может быть у гемового железа при образовании метгемоглобина, когда Fe изменяет валентность и становится трехвалентным. В этом случае, при истинном окислении железа, гемоглобин утрачивает способность переносить кислород.

Гем в молекуле гемоглобина способен присоединять другие молекулы. Если он присоединяет диоксид углерода, его называют карбогемоглобином. Если к гему присоединятся монооксид углерода, образуется карбоксигемоглобин. Сродство гемоглобина к CO в 300 раз выше, чем к О 2 . Поэтому отравление угарным газом очень опасно. Если во вдыхаемом воздухе содержится 1% СО, млекопитающие и птицы могут погибнуть.

Артериальная кровь насыщается кислородом на 96-97%. Этот процесс происходит очень быстро, всего за четверть секунды в альвеолярных капиллярах.

В литературе принято оценивать содержание кислорода в крови по показателю кислородная емкость крови .

Кислородная емкость крови – это максимальное количество кислорода, которое может присоединить 100 мл крови.

Поскольку 96% кислорода находится в соединении с гемоглобином, кислородная емкость крови определяется этим пигментом. Известно, что кислород-связывающая способность 1 г гемоглобина определяется величиной 1,34 – 1,36 мл О 2 , при нормальном атмосферном давлении. Это означает, что при содержании в крови 15 г% Нв (а это близко к средней), кислородная емкость составляет 1,341520 объемных процентов, то есть на каждые 20 мл О 2 на каждые 100 мл крови, или 200 мл О 2 на литр крови. В 5 литрах крови (полная кислородная емкость индивидуума, у которого 5 л крови в системе кровообращения) содержится 1 литр кислорода.

Реакция оксигенации гемоглобина обратима

HHb 4 +4O 2 = HHb 4 (O 2) 4

Или проще Hb+О 2 = HbО 2

Оказалось, что на практике удобнее анализировать этот процесс, если построить график зависимости концентрации HbО 2 в образце от парциального давления/напряжения кислорода. Чем больше в среде кислорода, тем сильнее равновесие в реакции смещается в сторону оксигенации, и наоборот.

Каждому значению РО 2 соответствует определенный процент HbО 2 . При значениях РО 2 , характерных для артериальной крови, практически весь гемоглобин окислен. В периферических тканях, при низких значениях напряжения кислорода, увеличивается скорость диссоциации его диссоциации до кислорода и гемоглобина.

Кривая диссоциации гемоглобина имеется в каждом учебнике.

Анализ кривой диссоциации оксигемоглобина показывает, что при напряжении кислорода в среде 60-100 мм рт.ст. (условия равнины и подъема человека на высоту до 2 километров) насыщение кислородов крови происходит полностью. В тканях отдача кислорода также протекает удовлетворительно, при напряжениях кислорода около 20 мм рт.ст.

Другими словами, характер кривой дает сведения о свойствах транспортной системы.

Диссоциация оксигемоглобина зависит не только от парциального давления кислорода в тканях, но и от некоторых других условий. Когда в кровь поступает углекислота из тканей, сродство гемоглобина к кислороду падает и кривая диссоциации сдвигается вправо. Это прямой эффект Вериго-Бора. Эффект Вериго-Бора способствует улучшению диссоциации оксигемоглобина в тканях. Обратный эффект наблюдается в легких, где отдача диоксида углерода приводит к более полному насыщению гемоглобина кислородом. Эффект обусловлен не самим СО 2 , а подкислением среды при образовании угольной кислоты (или накоплением молочной кислоты в активно работающих мышцах).

Не весь оксигемоглобин диссоциирует в тканях. От 40 до 70% его сохраняется в венозной крови. У человека каждые 100 мл крови отдают тканям 5-6 мл кислорода, и на такую же величину обогащаются новой его порцией в легочных капиллярах. Для оценки этих процессов (утилизации кислорода тканями) введен показатель артерио-венозная разница по кислороду.

Транспорт углекислого газа кровью.

Как и кислород, диоксид углерода в крови находится в двух состояниях – физически растворенном и химически связанном. Около 5% СО 2 транспортируется в растворенном виде. Химическая связь диоксида углерода осуществляется по реакции

СО 2 + Н 2 О↔Н 2 СО 3 ↔Н + + НСО 3 -

Реакция сдвигается вправо при высоких напряжениях СО 2 , и влево при низких. Катализируется карбоангидразой с коэффициентом ускорения 250-300 раз. 80% образовавшейся угольной кислоты транспортируется в виде бикарбонатов щелочных металлов. Противоионами для карбонатных ионов в плазме выступают Na + , а в эритроитах – К + . Остальные 20% НСО 3 - транспортируется в связи с гемоглобином. В артериальной крови 15% СО 2 (в венозной 20%) переносится в виде карбаминовых групп гемоглобина, поскольку NH-группы белка связывают СО 2 обратимо. Доля транспорта в связи с гемом ничтожна. Для образования бикарбонатов щелочных металлов используется их резерв, ассоциированный с молекулой гемоглбина. Гемоглобин, как и все белковые молекулы, является амфотерным соединением. В слабощелочной среде (рН 7,35-7,4) гемоглобин и оксигемоглобин ведут себя как слабые кислоты, ассоциируя ионы калия. В артериальной крови 67% НСО 3 - растворено в плазме, уравновешивающим ионом выступает натрий. Гемоглобин в дезоксиформе слабее по кислотным свойствам, чем оксигемоглобин, поэтому легко отдает К + , при этом реализуется эффект Холдена: оксигенация гемоглобина облегчает отдачу СО 2 кровью, а дезоксигенация гемоглобина усиливает поглощение диоксида углерода.

Гемоглобиновая буферная система (отвечает за 75% буферных свойств крови) и карбонатная буферная система, кроме дыхательной функции, обеспечивает постоянство активной реакции крови в диапазоне рН 7,35 – 7,47 (венозная кровь в норме имеет более кислую реакцию на 0,02 единицы рН). Поэтому нарушения кислотно-щелочного равновесия в организме может быть не только метаболическим, но и дыхательным. При респираторном ацидозе рН крови снижается, концентрация НСО 3 - возрастает. При респираторном алкалозе (может наступить при гипервентиляции) наблюдаются обратные процессы, концентрация НСО 3 - падает из-за «вымывания» углекислого газа.

Регуляция дыхания.

Конечная цель регуляции дыхания, или полезный приспособительный результат – поддержание постоянного газового состава и рН артериальной и венозной крови. Отклонение этих показателей от нормы (РО 2 менее 100 мс рт.ст., РСО 2 более 40 мм рт.ст., рН от 7,36) воспринимается как стимул для регуляции. Координированные сокращения дыхательных мышц обеспечиваются ритмической активностью нейронов дыхательного центра, или, как это принято формулировать по современным представлениям, центрального дыхательного механизма .

К дыхательным нейронам относят те нервные клетки, импульсная активность которых меняется в соответствии с фазами дыхательного цикла. Различают инспираторные нейроны (нейроны вдоха) и экспираторные (нейроны выдоха) и клеточные популяции, согласовывающие смену дыхательных фаз. Центральный дыхательный механизм локализован в ретикулярной формации продолговатого мозга. Большинство нейронов сгруппированы в двух главных группах ядер – дорсальной и вентральной. В дорсальной группе сосредоточены инспираторные нейроны, посылающие аксоны в шейные сегменты спинного мозга, где они синаптически оканчиваются на мотонейронах ядра диафрагмального нерва. Ядра вентральной группы дыхательных ядер содержат как инспираторные, так и экспираторные нейроны. Они связаны синаптически с теми нейронами спинного мозга, которые иннервируют межреберные мышцы. Для 80% нейронов грудного отдела спинного мозга характерна дыхательная ритмика. В области моста выделен пневмотаксический центр, клетки которого принимают участие в переключении фаз дыхательного цикла. Для нейронов центрального дыхательного механизма характерен автоматизм, хотя пейсмекеров пока не обнаружено. Основной активатор дыхательного механизма – афферентная сигнализация от рецепторов, расположенных во внутренней среде организма. Главный дыхательный стимул – снижение в крови содержания кислорода и повышение напряжения диоксида углерода. Хеморецепторы посылают в ЦНС сигналы о степени отклонения этих показателей от нормы. Основное место локализации хеморецепторов дыхательной системы – область каротидного синуса (каротидные клубочки). В области дуги аорты расположена вторая группа хеморецепторов, контролирующая газовые и кислотные показатели той порции крови, которая направляется к внутренним органам. В продолговатом мозге имеются и центральные хеморецепторы.

Установлено, что чем выше в крови рСО 2 , тем выше частота импульсации в афферентных волокнах синокаротидного нерва. Эта афферентная посылка интегрируется центральным дыхательным механизмом и используется для усиления дыхания, как увеличением частоты дыхательных циклов, так и углублением каждого вдоха.

В трахее, бронхах имеются собственные рецепторы, инициирующие защитные рефлексы дыхания, например, кашель. Кроме того, часть из них используется и для коррекции частоты и глубины дыхания. К ним относится рефлекс Геринга–Брейера. Рецепторы, реагирующие на повышение давления в воздухоносных путях, активируются при вдохе и посылают афферентные сигналы по волокнам блуждающего нерва к группе нейронов дорсальной порции дыхательного центра. Их возбуждение нарастает в фазу вдоха и тормозит инспираторные нейроны. Каждый вдох за счет рецепторов растяжения подготавливает свое окончание.

Имеются рецепторы и в верхних дыхательных путях, они активируются при попадании в нос и рот пыли или ирритантов. Кашель, чихание, принюхивание, остановка дыхания на вдохе при обнаружении резкого неприятного запаха или химическом загрязнении среды – рефлекторные проявления их активации.

Регуляция дыхания осуществляется центральной нервной системой самопроизвольно (автоматически) и произвольно. В стволовой части мозга (в частности в продолговатом мозге) размещена группа нервных клеток - дыхательный центр, отвечающий за дыхательный цикл (вдох-выдох). Дыхательный центр находится в постоянном ритмической активности, которая обычно осуществляется автоматически. Ритмические импульсы передаются от дыхательного центра к дыхательным мышцам, обеспечивая последовательное осуществление вдоха и выдоха.

Деятельность дыхательного центра регулируется рефлекторно (импульсами, поступающими от рецепторов) и гуморального (в зависимости от химического состава крови). Оба механизма регуляции действуют слаженно и между ними трудно провести границу.

Рефлекторная регуляция дыхания

Автоматическая регуляция дыхания. Дыхательный центр воспринимает информацию, поступающую от хеморецепторов и механорецепторов. Хеморецепторы расположены в крупных сосудах и реагируют на снижение концентрации кислорода и повышение концентрации углекислого газа. В них возникают нервные импульсы, которые по нервам достигают дыхательного центра и стимулируют акт вдоха. В заключительной стадии вдоха, когда легкие растягиваются, раздражаются механорецепторы, расположенные в дыхательных мышцах и легких. Импульсы, возникающие в механорецепторов, направляются в дыхательного центра, тормозят центр вдоха и возбуждают центр выдоха. От центра выдоха импульсы передаются в дыхательных мышц, которые начинают расслабляться. Окончания выдоха рефлекторно стимулирует вдох.

Произвольная регуляция дыхания. В регуляции дыхания может участвовать кора больших полушарий головного мозга. Человек может произвольно (по своему желанию) на некоторое время задержать дыхание, изменить его ритм и глубину.

Гуморальная регуляция дыхания

Значительное влияние на дыхательный центр осуществляет химический состав крови, особенно его газовый состав. Например, накопление углекислого газа в крови раздражает хеморецепторы и рефлекторно возбуждает дыхательный центр. Гормон адреналин способен непосредственно влиять на дыхательный центр стимулируя дыхательные движения. Подобное действие может вызвать молочная кислота, которая образуется во время работы мышц. Она способна раздражать хеморецепторы в сосудах, что также приводит к увеличению частоты и глубины дыхания.

Особенности регуляции дыхания в детском возрасте

На момент рождения функциональное формирование дыхательного центра еще не завершилось. Возбудимость дыхательного центра у новорожденных является низкой, однако они характеризуются высокой стойкостью к нехватке кислорода в воздухе. Чувствительность дыхательного центра к содержанию углекислого газа повышается с возрастом. В 11 лет уже хорошо выражена возможность приспособления дыхания к различным условиям жизнедеятельности. В период полового созревания происходят временные изменения регуляции дыхания. Организм подростка является менее устойчивым к недостатка кислорода. По мере роста и развития потребность в кислороде обеспечивается совершенствованием регуляции дыхательного аппарата. Дыхание становится более экономным. По мере развития коры больших полушарий головного мозга совершенствуется возможность произвольно изменять дыхание - останавливать дыхание или осуществлять максимальную вентиляцию легких.

Во время физических нагрузок младшие школьники не могут значительно изменить глубину дыхания и увеличивают частоту дыхательных движений. Дыхание становится более частым и еще более поверхностным, что снижает эффективность вентиляции легких. Организм подростков быстро достигает максимального уровня потребления кислорода но не может долго поддерживать этот процесс на высоком уровне.

Наиболее оптимальным является дыхание носом, при котором выдох длиннее вдоха. Одной из главных задач учителя является научить детей правильно дышать во время ходьбы, бега, физического труда.



error: Контент защищен !!