Телескоп «Джеймс Уэбб» – самый мощный телескоп в мире (28 фото). Что такое телескоп и зачем он нужен

Оптические телескопические системы используют в астрономии (для наблюдения за небесными светилами ), в оптике для различных вспомогательных целей: например, для изменения расходимости лазерного излучения . Также, телескоп может использоваться в качестве зрительной трубы , для решения задач наблюдения за удалёнными объектами . Самые первые чертежи простейшего линзового телескопа были обнаружены в записях Леонардо Да Винчи. Построил телескоп в Липперсгей . Также создание телескопа приписывается его современнику Захарию Янсену .

История

Годом изобретения телескопа, а вернее зрительной трубы , считают 1608 год , когда голландский очковый мастер Иоанн Липперсгей продемонстрировал своё изобретение в Гааге . Тем не менее в выдаче патента ему было отказано в силу того, что и другие мастера, как Захарий Янсен из Мидделбурга и Якоб Метиус из Алкмара , уже обладали экземплярами подзорных труб, а последний вскоре после Липперсгея подал в Генеральные штаты (голландский парламент) запрос на патент . Позднейшее исследование показало, что, вероятно, подзорные трубы были известны ранее, ещё в 1605 году . В «Дополнениях в Вителлию», опубликованных в 1604 г., Кеплер рассмотрел ход лучей в оптической системе, состоящей из двояковыпуклой и двояковогнутой линз. Самые первые чертежи простейшего линзового телескопа (причем как однолинзового, так и двухлинзового) были обнаружены ещё в записях Леонардо да Винчи , датируемых 1509 годом. Сохранилась его запись: «Сделай стекла, чтобы смотреть на полную Луну» («Атлантический кодекс»).

Первым, кто направил зрительную трубу в небо, превратив её в телескоп, и получил новые научные данные, стал Галилей . В 1609 году он создал свою первую зрительную трубу с трёхкратным увеличением. В том же году он построил телескоп с восьмикратным увеличением длиной около полуметра. Позже им был создан телескоп, дававший 32-кратное увеличение: длина телескопа была около метра, а диаметр объектива - 4,5 см. Это был очень несовершенный инструмент, обладавший всеми возможными аберрациями . Тем не менее, с его помощью Галилей сделал ряд открытий.

Название «телескоп» предложил в 1611 году греческий математик Иоаннис Димисианос (Giovanni Demisiani-Джованни Демизиани) для одного из инструментов Галилея , показанного на загородном симпосии Академии деи Линчеи . Сам Галилей использовал для своих телескопов термин лат. perspicillum .

«Телескоп Галилея», Музей Галилея (Флоренция)

В 20-м веке также наблюдалось развитие телескопов, которые работали в широком диапазоне длин волн от радио до гамма-лучей. Первый специально созданный радиотелескоп вступил в строй в 1937 году. С тех пор было разработано огромное множество сложных астрономических приборов.

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную), установленную на монтировке , снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр . Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра . В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения . В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом , а сам телескоп превращается в астрограф . Телескоп фокусируется при помощи фокусёра (фокусировочного устройства).

По своей оптической схеме большинство телескопов делятся на:

  • Линзовые (рефракторы или диоптрические) - в качестве объектива используется линза или система линз.
  • Зеркальные (рефлекторы или катаптрические) - в качестве объектива используется вогнутое зеркало .
  • Зеркально-линзовые телескопы (катадиоптрические) - в качестве объектива используется обычно сферическое главное зеркало , а для компенсации его аберраций служат линзы.

Радиотелескопы

Радиотелескопы Very Large Array в штате Нью-Мексико, США

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы. Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприемник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приемников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры . При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array ). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy ), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети. Российский орбитальный радиотелескоп Радиоастрон также планируется использовать в качестве одного из элементов гигантского интерферометра.

Космические телескопы

Земная атмосфера хорошо пропускает излучения в оптическом (0,3-0,6 мкм), ближнем инфракрасном (0,6-2 мкм) и радио (1 мм - 30 ) диапазонах. Однако с уменьшением длины волны прозрачность атмосферы сильно снижается, вследствие чего наблюдения в ультрафиолетовом, рентгеновском и гамма диапазонах становятся возможными только из космоса. Исключением является регистрация гамма-излучения сверхвысоких энергий, для которого подходят методы астрофизики космических лучей : высокоэнергичные гамма-фотоны в атмосфере порождают вторичные электроны, которые регистрируются наземными установками по черенковскому свечению . Примером такой системы может служить телескоп CACTUS .

В инфракрасном диапазоне также сильно поглощение в атмосфере, однако, в области 2-8 мкм имеется некоторое количество окон прозрачности (как и в миллиметровом диапазоне), в которых можно проводить наблюдения. Кроме того, поскольку большая часть линий поглощения в инфракрасном диапазоне принадлежит молекулам воды , инфракрасные наблюдения можно проводить в сухих районах Земли (разумеется, на тех длинах волн, где образуются окна прозрачности в связи с отсутствием воды). Примером такого размещения телескопа может служить Южнополярный телескоп (англ. South Pole Telescope ), установленный на южном географическом полюсе , работающий в субмиллиметровом диапазоне.

В оптическом диапазоне атмосфера прозрачна, однако из-за Рэлеевского рассеяния она по-разному пропускает свет разной частоты, что приводит к искажению спектра светил (спектр сдвигается в сторону красного). Кроме того, атмосфера всегда неоднородна, в ней постоянно существуют течения (ветры), что приводит к искажению изображения. Поэтому разрешение земных телескопов ограничено значением приблизительно в 1 угловую секунду, независимо от апертуры телескопа. Эту проблему можно частично решить применением адаптивной оптики , позволяющей сильно снизить влияние атмосферы на качество изображения, и поднятием телескопа на большую высоту, где атмосфера более разреженная - в горы , или в воздух на самолетах или стратосферных баллонах . Но наибольшие результаты достигаются с выносом телескопов в космос. Вне атмосферы искажения полностью отсутствуют, поэтому максимальное теоретическое разрешение телескопа определяется только дифракционным пределом : φ=λ/D (угловое разрешение в радианах равно отношению длины волны к диаметру апертуры). Например, теоретическая разрешающая способность космического телескопа с зеркалом диаметром 2.4 метра (как у телескопа Хаббл) на длине волны 555 нм составляет 0.05 угловой секунды (реальное разрешение Хаббла в два раза хуже - 0.1 секунды, но все равно на порядок выше, чем у земных телескопов).

Вынос в космос позволяет поднять разрешение и у радиотелескопов, но по другой причине. Каждый радиотелескоп сам по себе обладает очень маленьким разрешением. Это объясняется тем, что длина радиоволн на несколько порядков больше, чем видимого света, поэтому дифракционный предел φ=λ/D намного больше, даже несмотря на то, что размер радиотелескопа тоже в десятки раз больше, чем у оптического. Например, при апертуре 100 метров (в мире существуют только два таких больших радиотелескопа) разрешающая способность на длине волны 21 см (линия нейтрального водорода) составляет всего 7 угловых минут, а на длине 3 см - 1 минута, что совершенно недостаточно для астрономических исследований (для сравнения, разрешающая способность невооруженного глаза 1 минута, видимый диаметр Луны - 30 минут). Однако, объединив два радиотелескопа в радиоинтерферометр , можно существенно повысить разрешение - если расстояние между двумя радиотелескопами (так называемая база радиоинтерферометра ) равна L, то угловое разрешение определяется уже не формулой φ=λ/D, а φ=λ/L. Например при L=4200 км и λ=21 см максимальное разрешение составит около одной сотой угловой секунды. Однако, для земных телескопов максимальная база не может, очевидно, превышать диаметр Земли. Запустив один из телескопов в дальний космос, можно значительно увеличить базу, а следовательно, и разрешение. Например, разрешение космического телескопа Радиоастрон при работе совместно с земным радиотелескопом в режиме радиоинтерферометра (база 390 тыс. км) составит от 8 до 500 микросекунд дуги в зависимости от длины волны (1,2-92 см). (для сравнения - под углом 8 мкс виден объект размером 3 м на расстоянии Юпитера, или объект размером с Землю на расстоянии

Тот, кто изобрел телескоп, несомненно, заслуживает уважения и огромной благодарности со стороны всех современных астрономов. Это одно из величайших открытий в истории. Телескоп позволил изучить ближний космос и узнать много нового о строении вселенной.

С чего все началось

Первые попытки создать телескоп приписываются великому Леонардо да Винчи. Патентов и упоминаний о рабочей модели нет, но ученые нашли остатки чертежей и описаний стекол для разглядывания луны. Возможно, это еще один миф об этом уникальном человеке.

Устройство телескопа пришло на ум Томасу Диггесу, который и пытался его создать. Он использовал выпуклое стекло и вогнутое зеркало. Само по себе изобретение могло работать, и, как покажет история, подобное устройство будет создано вновь. Но технически еще не было средств для воплощения этого замысла, создать рабочую модель ему так и не удалось. Наработки остались в тот период невостребованными, а Диггес вошел в историю астрономии за описание

Тернистый путь

В каком году изобрели телескоп, вопрос по-прежнему остается спорным. В 1609-м голландский ученый Ханс Липперсгей представил патентному бюро свое увеличительное изобретение. Назвал он его Но патент был отклонен в силу чрезмерной простоты, хотя сама подзорная труба плотно вошла в обиход. Особенную популярность она приобрела у мореходов, а для астрономических нужд оказалась слабовата. Шаг вперед был уже сделан.

В том же году попала в руки Томаса Хариота, изобретение ему пришлось по нраву, но нуждалось в значительной доработке первоначального образца. Благодаря его работе астрономы впервые смогли увидеть, что луна имеет свой рельеф.

Галилео Галилей

Узнав о попытке создания специального прибора для увеличения звезд, Галилей по-настоящему загорелся этой идеей. Итальянец решил создать для своих исследований подобную конструкцию. Математические знания помогли ему с расчетами. Устройство состояло из трубки и вставленных в нее линз, изготовленных для людей с плохим зрением. По сути, это и был первый телескоп.

Сегодня этот вид телескопов называют рефракторными. Благодаря усовершенствованной конструкции Галилео сделал немало открытий. Он сумел доказать, что луна имеет форму сферы, разглядел на ней кратеры и горы. 20-кратное увеличение позволило рассмотреть 4 наличие колец у Сатурна и много чего еще. На тот момент устройство оказалось самым совершенным прибором, но он имел свои недостатки. Узкая трубка значительно сокращала круг обзора, а искажения, полученные за счет большого числа линз, делали картинку размытой.

Эпоха рефракторных телескопов

Четко ответить на вопрос, кто первым изобрел телескоп, не получится, ведь Галилей только усовершенствовал уже существующую трубу для созерцания неба. Без идеи Липперсгея ему могла и не прийти в голову эта мысль. В последующие годы шло постепенное совершенствование прибора. Развитие значительно тормозила невозможность создания больших линз.

Толчком дальнейшего развития стало изобретение штатива. Трубу теперь не надо было держать в руках продолжительное время. Благодаря этому стало возможным удлинение трубки. Христиан Гюйгенс в 1656 году представил аппарат с увеличением в 100 раз, достигнуть этого удалось за счет увеличения расстояния между линзами, которые помещались в трубку длиной 7 метров. Спустя 4 года был создан телескоп длиной 45 метров.

Помехой для исследований мог стать даже небольшой ветер. Уменьшения искажения картинки пытались добиться путем дальнейшего увеличения расстояние между линзами. Развитие телескопов пошло в сторону удлинения. Самый длинный из них достигал 70 метров. Такое положение вещей сильно затрудняло работу, да и саму сборку устройства.

Новый принцип

Развитие космической оптики зашло в тупик, но долго так продолжаться не могло. Кто изобрел телескоп принципиально нового образца? Это был один из величайших ученых всех времен - Исаак Ньютон. Вместо линзы для фокусировки стало использоваться вогнутое зеркало, что позволило избавиться от хроматических искажений. Рефракторные телескопы ушли в прошлое, по праву уступив место рефлекторным.

Открытие телескопа, работающего по принципу рефлектора, перевернуло астрономическую науку. Зеркало, использованное в изобретении, Ньютону пришлось делать самостоятельно. Для его изготовления был использован сплав олова, меди и мышьяка. Первая рабочая модель продолжает храниться, по сей день, ее пристанищем стал Лондонский музей астрономии. Но оставалась небольшая проблема. Те, кто изобрел телескоп, еще долгое время не могли создать зеркало идеальной формы.

Прорыв

1720 год стал знаменательной датой для всей астрономической науки. Именно в этом году оптикам удалось создать рефлекторное зеркало диаметром 15 см. к слову сказать, зеркало ньютона имело диаметр всего 4 см. Это был настоящий прорыв, проникнуть в тайны вселенной стало гораздо проще. Миниатюрные телескопы по сравнению с 40-метровыми гигантами были всего 2 метра длиной. Наблюдение за космосом стало доступно большему кругу людей.

Компактные и удобные телескопы могли бы надолго войти в моду, если бы не одно "но". Сплав металла быстро тускнел и тем самым терял свои отражательные свойства. Вскоре зеркальная конструкция была усовершенствована и приобрела новые черты.

Два зеркала

Очередным усовершенствованием устройство телескопа обязано французу Кассегрену. Он придумал использовать 2 стеклянных зеркала вместо одного, сделанного из металлического сплава. Его чертежи оказались рабочими, но самому ему не удалось в этом убедиться, техническое оснащение не позволило воплотить мечту.

Телескопы Ньютона и Кассегрена можно уже считать первыми современными моделями. На их основе продолжается сейчас развитие телескопостроения. По принципу Кассегрена построен современный космический телескоп "Хаббл", который уже принес множество информации человечеству.

Возвращение к основам

Рефлекторы не смогли окончательно одержать победу. Рефракторы триумфально вернулись на пьедестал с изобретением двух новых сортов стекла: крон - более легкого, и флинт - тяжелого. Такая комбинация пришлась в помощь тому, кто изобрел телескоп без ахроматических погрешностей. Это оказался талантливый ученый Дж. Доллонд, в честь него и был назван новый вид объектива - доллондовый.

В 19-м веке рефракторный телескоп пережил свое второе рождение. С развитием технической мысли стало возможным изготавливать линзы идеальной формы и все большего размера. В 1824 году диаметр объектива составлял 24 см, к 1966 году он вырос в два реза, а в 1885 году составил уже 76 сантиметров. Условно говоря, диаметр объектива рос примерно на 1 см в год. О зеркальных устройствах почти забыли, в то время как линзовые теперь росли не в длину, а в сторону увеличения диаметра. Это позволяло улучшить угол обзора и одновременно увеличить картинку.

Великие энтузиасты

Возродили рефлекторные установки астрономы-любители. Одним из них был Уильям Гершель, несмотря на то что основной род его деятельности - это музыка, он сделал немало открытий. Самое первое его открытие - это планета Уран. Небывалый успех окрылил его на создание телескопа большего диаметра. Создав в домашней лаборатории зеркало диаметром 122 см, он сумел рассмотреть 2 неизвестных ранее.

Успехи любителей подталкивали к новым экспериментам. Основную проблему металлических зеркал - быстрое помутнение - так и не удалось преодолеть. Это натолкнуло французского физика Леона Фуко на мысль вставить в телескоп другое зеркало. В 1856 году он изготовил для увеличительного устройства стеклянное зеркало с серебряным напылением. Результат превзошел самые смелые прогнозы.

Еще одно важное дополнение внес Михаил Ломоносов. Он изменил систему так, что зеркало стало вращаться независимо от линзы. Это позволило максимально уменьшить потери световых волн и настраивать изображение. Одновременно с ним о подобном открытии заявил и Гершель.

Сейчас активно используются обе конструкции, и продолжается совершенствование оптики. В дело вступают современные компьютеры и Самый большой телескоп из тех, что расположены на Земле, - это большой Канарский телескоп. Но скоро его величие затмится, уже в работе проекты с зеркалами диаметром 30 м против его 10,4 м.

Телескопы-гиганты строят на возвышенности, чтобы максимально исключить преломление картинки земной атмосферой. Перспективным направлением является строительство космических телескопов. Они дают самую четкую картинку с максимальным разрешением. Все это было бы невозможно, если бы в далеком 17-м веке не была создана подзорная труба.

Базовые знания о телескопах и их разновидности

Предлагаем Вашему вниманию краткое руководство, которое может помочь разобраться во всех типах моделей телескопов, доступных на сегодняшний день. Эти основы помогут Вам не только получить базовые знания о телескопах, но определится с тем, какой именно телескоп и с какой целью Вы хотите приобрести.

Цена на телескопы может быть абсолютно разной. Как правило, цены на доступные телескопы начинаются от 12 000 рублей или больше, хотя есть и очень простые модели, которые можно приобрести по цене ниже 7500 руб. Этот обзор будет посвящен именно относительно недорогим телескопам, поэтому начинающим астрономам будет особенно интересно ознакомиться с его содержанием.

Главное, что следует учесть при выборе телескопа, это наличие у него высококачественной оптики и устойчивого, плавно работающего крепления. Будь это большой телескоп или портативный маленький, прежде всего Вам нужно знать где и при каких условиях возможно его применение, и будете ли Вы использовать его на самом деле.

Диафрагма: наиболее важная особенность телескопа

Наиболее важной характеристикой телескопа является его диафрагма — диаметр его объектива или зеркала. Прежде всего, следует посмотреть на спецификации телескопа вблизи его фокусировочного узла, на передней части трубки или на коробке. Диаметр апертуры (D) будет выражаться либо в миллиметрах или (на импортных моделях) в дюймах (1 дюйм равен 25,4 мм). Желательно, чтобы телескоп имел диафрагму не менее 70 мм (2,8 дюйма), а лучше даже больше.

Большая диафрагма позволяет увидеть слабо различимые объекты и рассмотреть детали. Но хороший небольшой телескоп тоже может показать Вам очень многое — особенно, если Вы живете далеко от городских огней. Например, можно легко рассмотреть десятки галактик за пределами нашей галактики Млечного Пути через телескопы с диафрагмой всего лишь 80 мм (3.1 дюймов), но для этого нужно находиться в темноте, в отдалении от электрического освещения. Ведь для того, чтобы увидеть те же самые объекты в каком-нибудь городском дворе, потребуется телескоп с диафрагмой не менее 152 или даже 203 мм, как на изображении:

Впрочем, независимо от того, из какой точки Вы ведете наблюдение за небом, телескопы с достаточно высоким значением диафрагмы позволят разглядеть все намного лучше и четче.

Типы телескопов

При выборе телескопа Вам придется столкнуться с нелегким выбором. Дело в том, что существует три основных вида телескопов:

Рефракторы (линзовые) имеют объектив в передней части трубки – наиболее распространенный вид телескопов. Несмотря на низкие эксплуатационные расходы, они имеют достаточно высокую стоимость, которая значительно увеличивается пропорционально максимальному значению диафрагмы.

Рефлекторы (зеркальные) собирают свет с помощью зеркала в задней части основной трубы. Данный тип телескопов, как правило, наименее дорогой, но у него есть одна особенность – он требует периодической коррекции оптического выпрямления .

Составные (или зеркально-линзовые) телескопы, которые сочетают в себе технологию двух предыдущих, сделаны на основе комбинации линз и зеркал. Такие телескопы обычно имеют компактные трубы и относительно легкий вес. Однако, этот тип телескопов самый дорогостоящий. Существует две наиболее популярные конструкции составных телескопов: Шмидт-Кассегрена и Максутова-Кассегрена .

Степень фокусировки телескопа является ключом к определению такого понятия как “мощность” телескопа. Это фокусное расстояние объектива, разделенное на диаметр окуляра. Например, если телескоп имеет фокусное расстояние 500 мм и 25-мм окуляр, увеличение составляет 500/25, или в 20 раз. Большинство типов телескопов поставляется с одним или двумя окулярами, изменить степень увеличения можно путем смены окуляров с разными фокусными расстояниями.

Монтировка: наиболее недооцененный актив телескопа

После приобретения телескопа Вам будет необходимо установить его на крепкую опору. Обычно телескопы продают в комплекте с удобно упакованными треножниками и креплениями. Однако у телескопов меньших размеров часто просто есть монтажный блок, который позволяет прикрепить его к стандартному фото-штативу с одним винтом.

Внимание : Штатив, достаточно хороший для снимков вашей семьи не всегда может быть достаточно устойчивым для астрономии! Крепления, разработанные специально для телескопов, обычно воздерживаются от одно шнековых блоков крепления в пользу более крупных, более надежных колец или пластин.

Стандартные крепления позволяют осуществлять сферическое вращение телескопа влево и вправо, вверх и вниз, подобно тому, как это происходит на фото-штативах. Такие механизмы известны как альт — азимутальные (или просто Alt-AZ) крепления.

Более сложный механизм, предназначенный для отслеживания движения звезд, который поворачивается только по одной оси, называется экваториальная монтировка. Такие крепления, как правило, больше и тяжелее, чем альт — азимутальные конструкции. Чтобы использовать такой штатив правильно, Вам будет необходимо откалибровать его по Полярной звезде.

Современные и дорогостоящие типы монтировок оснащены небольшими двигателями, которые позволяют отслеживать небосклон при помощи пульта управления. Самые продвинутые модели этого типа, который также называют «Go To», имеют небольшой компьютер, который позволяет манипулировать телескопом. Так, после ввода текущей даты, времени и местоположения, телескоп не только сможет обозначить себя относительно небесных объектов, но и сделает цифровую индексацию оных, предоставив краткое описание. При должной настройке, пользование таким телескопом и монтировкой превратит Ваше наблюдение за небом в увлекательную экскурсию с обзором лучших небесных экспонатов. Минусом такого устройства может служить лишь сложный процесс калибровки, и достаточно высокая цена.


26.10.2017 05:25 1565

Что такое телескоп и зачем он нужен?

Телескоп - это прибор, который позволяет рассматривать космические объекты с близкого расстояния. Теле переводится с древнегреческого языка – далеко, а скопео – смотрю. Внешне многие телескопы очень похожи на подзорную трубу, поэтому у них и одинаковое назначение - приближать изображения объектов. В связи с этим, их ещё называют оптические телескопы, поскольку они приближают изображения с помощью линз, оптических материалов, похожих на стекло.

Родиной телескопа является Голландия. В 1608 году мастера по изготовлению очков изобрели в этой стране зрительную трубу, прообраз современного телескопа.

Однако первые чертежи телескопов были обнаружены ещё в документах итальянского художника и изобретателя Леонардо да Винчи. На них стояла дата 1509 года.

Современные телескопы для большего удобства и стабильности ставятся на специальную подставку. Их основными частями являются объектив и окуляр.

Объектив расположен в дальней от человека части телескопа. В нём находятся линзы или вогнутые зеркала, поэтому оптические телескопы делят на линзовые и зеркальные.

Окуляр расположен в ближней от человека части прибора и обращён к глазу. Он также состоит из линз, которые увеличивают изображение объектов, формируемых объективом. В некоторых современных телескопах, которыми пользуются астрономы, вместо окуляра установлен дисплей, показывающий изображения космических объектов.

Профессиональные телескопы отличаются от любительских тем, что обладают большим увеличением. С их помощью астрономы смогли сделать множество открытий. Учёные ведут наблюдения в обсерваториях за другими планетами, кометами, астероидами и чёрными дырами.

Благодаря телескопам они смогли более подробно изучить спутник Земли – Луну, которая находится от нашей планеты на относительно небольшом по космическим меркам расстоянии – 384403 км. Увеличения этого прибора позволяют отчётливо рассмотреть кратеры лунной поверхности.

Любительские телескопы продаются в магазинах. По своим характеристикам они уступают тем, которыми пользуются учёные. Но с их помощью можно также увидеть кратеры Луны,

Есть такой механизм - телескоп. Нужен для чего он? Какие функции выполняет? В чем помогает?

Общая информация

Наблюдение за звёздами было увлекательным занятием ещё с давних времён. Это было не только приятное, но и полезное времяпрепровождение. Первоначально человек мог наблюдать за звёздами только своими глазами. В таких случаях звезды были всего лишь точками на небесном своде. Но в семнадцатом веке был изобретён телескоп. Нужен для чего он был и зачем сейчас применяется? В ясную погоду с его помощью можно наблюдать за тысячами звёзд, внимательно рассматривать месяц или просто наблюдать за глубинами космоса. Но, допустим, человека заинтересовала астрономия. Телескоп поможет ему наблюдать уже за десятками, сотнями тысяч или даже миллионами звёзд. В таком случае всё зависит от мощности используемого прибора. Так, любительские телескопы дают увеличение в несколько сотен раз. Если говорить о научных приборах, то они могут видеть в тысячи и миллионы раз лучше, чем мы.

Виды телескопов

Условно можно выделить две группы:

  1. Любительские приборы. Сюда относят телескопы, увеличительная способность которых составляет максимум несколько сотен раз. Хотя существуют и относительно слабые приборы. Так, для наблюдения за небом можно купить даже бюджетные модели со стократным увеличением. Если хотите купить себе такой прибор, то знайте про телескоп - цена на них начинается от 5 тысяч рублей. Поэтому позволить себе заниматься астрономией может практически каждый.
  2. Профессионально-научные приборы. Здесь присутствует деление на две подгруппы: оптические и радиолокационные телескопы. Увы, первые обладают определённым, довольно скромным запасом возможностей. К тому же при достижении порога в 250-кратное увеличение из-за атмосферы резко начинает падать качество картинки. В качестве примера можно привести известный телескоп "Хаббл". Он может передавать четкие картинки с увеличением в 5 тысяч раз. Если же пренебречь качеством, то он может улучшать видимость в 24 000! Но настоящее чудо - это радиолокационный телескоп. Нужен для чего он? Ученые с его помощью наблюдают за Галактикой и даже за Вселенной, узнавая про новые звёзды, созвездия, туманности и иные

Что даёт человеку телескоп?

Он является билетом в поистине фантастический мир неизведанных звездных глубин. Даже бюджетные любительские телескопы позволят совершать научные открытия (пускай даже и сделанные ранее одним из профессиональных астрономов). Хотя и обычный человек может многое сделать. Так, было ли известно читателю, что большинство комет открыли именно любители, а не профессионалы? Некоторые люди делают открытие даже не один раз, а много, называя найденные объекты так, как им захочется. Но даже если не удалось найти ничего нового, то каждый человек с телескопом может почувствовать себя значительно ближе к глубинам Вселенной. С его помощью можно любоваться красотами и других планет Солнечной системы.

Если говорить о нашем спутнике, то можно будет внимательно рассмотреть рельеф его поверхности, который будет более живой, объемный и детализированный. Кроме Луны, можно будет полюбоваться и Сатурна, полярной шапкой Марса, мечтая о том, как на нём будут расти яблони, красавицей-Венерой и выпаленным Солнцем Меркурием. Это поистине восхитительное зрелище! С более-менее мощным прибором можно будет наблюдать за переменными и двойными массивными огненными шарами, туманностями и даже ближайшими галактиками. Правда, для обнаружения последних всё же понадобятся определённые навыки. Поэтому нужно будет прикупить не только телескопы, но и учебную литературу.

Верный помощник телескопа

Кроме этого прибора, его владельцу полезен будет ещё один инструмент изучения космоса - карта звездного неба. Это надёжная и верная шпаргалка, помогающая и облегчающая поиск желаемых объектов. Ранее для этого использовались бумажные карты. Но сейчас их успешно заменили электронные варианты. Они значительно удобнее в использовании, нежели печатные карты. Более того, это направление активно развивается, поэтому значительную помощь владельцу телескопа сможет оказать даже… виртуальный планетарий. Благодаря им быстро будет представлено по первому запросу необходимое изображение. Среди дополнительных функций такого программного обеспечения - даже предоставление любой вспомогательной информации, что может быть полезна.

Вот мы и разобрались, что собой представляет телескоп, нужен для чего он и какие возможности предоставляет.



error: Контент защищен !!