Создание микроскопа. Краткая история микроскопа

Микроскоп - это оптический прибор, позволяющий получить увеличенные изображения мелких предметов или их деталей, которые невозможно рассмотреть невооружённым глазом.

Дословно слово «микроскоп» означает «наблюдать за чем-то маленьким, (от греческого «малый» и «смотрю»).

Глаз человека, как любая оптическая система, характеризуется определённым разрешением. Это наименьшее расстояние между двумя точками или линиями, когда они ещё не сливаются, а воспринимаются раздельно друг от друга. При нормальном зрении на расстоянии 250 мм разрешение составляет 0,176 мм. Поэтому все объекты, размер которых меньше этой величины, наш глаз уже не в состоянии различить. Мы не можем видеть клетки растений и животных, различные микроорганизмы и др. Но это можно сделать с помощью специальных оптических приборов - микроскопов.

Как устроен микроскоп

Классический микроскоп состоит из трех основных частей: оптической, осветительной и механической. Оптическая часть - это окуляры и объективы, осветительная - источники освещения, конденсор и диафрагма. К механической части принято относить все остальные элементы: штатив, револьверное устройство, предметный столик, систему фокусировки и многое другое. Все вместе и позволяет проводить исследования микромира.

Что такое «диафрагма микроскопа»: поговорим об осветительной системе

Для наблюдений микромира хорошее освещение настолько же важно, как и качество оптики микроскопа. Светодиоды, галогенные лампы, зеркало - для микроскопа могут использоваться разные источники освещения. У каждого есть свои плюсы и минусы. Подсветка может быть верхней, нижней или комбинированной. Ее расположение влияет на то, какие микропрепараты можно изучать при помощи микроскопа (прозрачные, полупрозрачные или непрозрачные).

Под предметным столиком, на который кладется образец для исследований, располагается диафрагма микроскопа. Она может быть дисковой или ирисовой. Диафрагма предназначена для регулировки интенсивности освещения: с ее помощью можно отрегулировать толщину светового пучка, идущего от осветителя. Дисковая диафрагма - это небольшая пластина с отверстиями разного диаметра. Ее обычно устанавливают на любительские микроскопы. Ирисовая диафрагма состоит из множества лепестков, с помощью которых можно плавно изменять диаметр светопропускающего отверстия. Она чаще встречается в микроскопах профессионального уровня.

Оптическая часть: окуляры и объективы

Объективы и окуляры - наиболее популярные запчасти для микроскопа. Хотя далеко не все микроскопы поддерживают смену этих аксессуаров. Оптическая система отвечает за формирование увеличенного изображения. Чем она лучше и совершеннее, тем картинка получается четче и подробнее. Но высочайший уровень качества оптики нужен только в профессиональных микроскопах. Для любительских исследований достаточно стандартной стеклянной оптики, обеспечивающей увеличение до 500-1000 крат. А вот пластиковых линз мы рекомендуем избегать - качество картинки в таких микроскопах обычно расстраивает.

Механические элементы

В любом микроскопе присутствуют элементы, которые позволяют исследователю управлять фокусом, регулировать положение исследуемого образца, настраивать рабочее расстояние оптического прибора. Все это часть механики микроскопа: коаксиальные механизмы фокусировки, препаратоводитель и препаратодержатель, ручки регулировки резкости, предметный столик и многое другое.

История создания микроскопа

Когда появился первый микроскоп, точно неизвестно. Простейшие увеличительные приборы - двояковыпуклые оптические линзы, находили ещё при раскопках на территории Древнего Вавилона.

Считается, что первый микроскоп создали в 1590 г. голландский оптик Ганс Янсен и его сын Захарий Янсен. Так как линзы в те времена шлифовали вручную, то они имели различные дефекты: царапины, неровности. Дефекты на линзах искали с помощью другой линзы - лупы. Оказалось, что если рассматривать предмет с помощью двух линз, то происходит его многократное увеличение. Смонтировав 2 выпуклые линзы внутри одной трубки, Захарий Янсен получил прибор, который напоминал подзорную трубу. В одном конце этой трубки находилась линза, выполняющая функцию объектива, а в другом - линза-окуляр. Но в отличие от подзорной трубы прибор Янсена не приближал предметы, а увеличивал их.

В 1609 г. итальянский учёный Галилео Галилей разработал составной микроскоп с выпуклой и вогнутой линзами. Он называл его «оккиолино» - маленький глаз.

10 лет спустя, в 1619 г. нидерландский изобретатель Корнелиус Якобсон Дреббель сконструировал составной микроскоп с двумя выпуклыми линзами.

Мало кто знает, что свой название микроскоп получил только в 1625 г. Термин «микроскоп» предложил друг Галилео Галилея немецкий доктор и ботаник Джованни Фабер.

Все созданные в то время микроскопы были довольны примитивными. Так, микроскоп Галилея мог увеличивать всего в 9 раз. Усовершенствовав оптическую систему Галилея, английский учёный Роберт Гук в 1665 г. создал свой микроскоп, который обладал уже 30-кратным увеличением.

В 1674 г. нидерландский натуралист Антони ван Левенгук создал простейший микроскоп, в котором использовалась всего одна линза. Нужно сказать, что создание линз было одним из увлечений учёного. И благодаря его высокому мастерству в шлифовании, все сделанные им линзы получались очень высокого качества. Левенгук называл их «микроскопиями». Они были маленькие, размером с ноготь, но могли увеличивать в 100 или даже в 300 раз.

Микроскоп Левенгука представлял собой металлическую пластину, в центре которой находилась линза. Наблюдатель смотрел через неё на образец, закреплённый с другой стороны. И хотя работать с таким микроскопом было не совсем удобно, Левенгук смог сделать с помощью своих микроскопов важные открытия.

В те времена было мало известно о строении органов человека. С помощью своих линз Левенгук обнаружил, что кровь состоит из множества крошечных частиц - эритроцитов, а мышечная ткань - из тончайших волокон. В растворах он увидел мельчайшие существа разной формы, которые двигались, сталкивались и разбегались. Теперь мы знаем, что это бактерии: кокки, бациллы и др. Но до Левенгука об этом не было известно.

Всего учёным было изготовлено более 25 микроскопов. 9 из них сохранились до наших дней. Они способны увеличивать изображение в 275 раз.

Микроскоп Левенгука был первым микроскопом, который завезли в Россию по указанию Петра I.

Постепенно микроскоп совершенствовался и приобретал форму, близкую к современной. Учёные России также внесли огромный вклад в этот процесс. В начале XVIII века в Петербурге в мастерской Академии наук создавались усовершенствованные конструкции микроскопов. Русский изобретатель И.П. Кулибин построил свой первый микроскоп, не имея никаких знаний о том, как это делали за границей. Он создал производство стекла для линз, придумал приспособления для их шлифовки.

Великий русский учёный Михаил Васильевич Ломоносов первым из русских учёных стал использовать микроскоп в своих научных исследованиях.

Однозначного ответа на вопрос «Кто же всё-таки изобрел микроскоп?», пожалуй, не существует. В развитие микроскопного дела внесли вклад лучшие ученые и изобретатели разных эпох.

Сегодня трудно представить себе научную деятельность человека без микроскопа. Микроскоп широко применяется в большинстве лабораторий медицины и биологии, геологии и материаловедения.

Полученные с помощью микроскопа результаты необходимы при постановке точного диагноза, при контроле над ходом лечения. С использованием микроскопа происходит разработка и внедрение новых препаратов, делаются научные открытия.

Микроскоп - (от греческого mikros - малый и skopeo - смотрю), оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом.

Глаз человека способен различать детали объекта, отстоящие друг от друга не менее чем на 0,08 мм. С помощью светового микроскопа можно видеть детали, расстояние между которыми составляет до 0,2 мкм. Электронный микроскоп позволяет получить разрешение до 0,1-0,01 нм.

Изобретение микроскопа, столь важного для всей науки прибора обусловлено, прежде всего, влиянием развития оптики. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н.э.) и Птоломею (127-151 гг.), однако их увеличительная способность не нашла практического применения. В связи с этим первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285 г. В 16 веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с помощью лупы.

Первый микроскоп был создан лишь в 1595 году Захариусом Йансеном (Z. Jansen). Изобретение заключалось в том, что Захариус Йансен смонтировал две выпуклые линзы внутри одной трубки, тем самым, заложив основы для создания сложных микроскопов. Фокусировка на исследуемом объекте достигалось за счет выдвижного тубуса. Увеличение микроскопа составляло от 3 до 10 крат. И это был настоящий прорыв в области микроскопии! Каждый свой следующий микроскоп он значительно совершенствовал.

В этот период (XVI в.) датские, английские и итальянские исследовательские приборы постепенно начали свое развитие, закладывая фундамент современной микроскопии.

Быстрое распространение и совершенствование микроскопов началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им зрительную трубу, стал использовать ее как своеобразный микроскоп (1609-1610), изменяя расстояние между объективом и окуляром.

Позднее, в 1624 г., добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.

В 1625 г. членом Римской "Академии зорких" ("Akudemia dei lincei") И. Фабером был предложен термин "микроскоп" . Первые успехи, связанные с применением микроскопа в научных биологических исследованиях, были достигнуты Гуком (R. Hooke), который первым описал растительную клетку (около 1665 г.). В своей книге "Micrographia" Гук описал устройство микроскопа.

В 1681 г. Лондонское королевское общество в своем заседании подробно обсуждало своеобразное положение. Голландец Левенгук (A. van Leenwenhoek) описывал изумительные чудеса, которые открывал своим микроскопом в капле воды, в настое перца, в иле реки, в дупле собственного зуба. Левенгук с помощью микроскопа обнаружил и зарисовал сперматозоиды различных простейших, детали строения костной ткани (1673-1677).

"С величайшим изумлением я увидел в капле великое множество зверюшек, оживленно двигающихся во всех направлениях, как щука в воде. Самое мелкое из этих крошечных животных в тысячу раз меньше глаза взрослой вши."

Лучшие лупы Левенгука увеличивали в 270 раз. С ними он увидел впервые кровеносные тельца, движение крови в капиллярных сосудах хвоста головастика, полосатость мускулов. Он открыл инфузории. Он впервые погрузился в мир микроскопических одноклеточных водорослей, где лежит граница между животным и растением; где движущееся животное, как зеленое растение, обладает хлорофиллом и питается, поглощая свет; где растение, еще прикрепленное к субстрату, потеряло хлорофилл и заглатывает бактерии. Наконец, он видел даже бактерии и в великом разнообразии. Но, разумеется, тогда не было еще и отдаленной возможности понять ни значение бактерий для человека, ни смысла зеленого вещества - хлорофилла, ни границы между растением н животным.

Открывался новый мир живых существ, более разнообразный и бесконечно более оригинальный, чем видимый нами мир.

В 1668 г. Е. Дивини, присоединив к окуляру полевую линзу, создал окуляр современного типа. В 1673 г. Гавелий ввел микрометрический винт, а Гертель предложил под столик микроскопа поместить зеркало. Таким образом, микроскоп стали монтировать из тех основных деталей, которые входят в состав современного биологического микроскопа.

В середине 17 столетия Ньютон открыл сложный состав белого света и разложил его призмой. Рёмер доказал, что свет распространяется с конечной скоростью, и измерил ее. Ньютон высказал знаменитую гипотезу - неверную, как вам известно,- о том, что свет есть поток летящих частиц такой необычайной мелкости и частоты, что они проникают через прозрачные тела, как стекло через хрусталик глаза, и, поражая ретину ударами, производят физиологическое ощущение света. Гюйгенс впервые заговорил о волнообразной природе света и доказал, как естественно она объясняет и законы простого отражения и преломления, и законы двойного лучепреломления в исландском шпате. Мысли Гюйгенса и Ньютона встретились в резком контрасте. Таким образом, в XVII в. в остром споре действительно встала проблема о сущности света.

Как разгадка вопроса сущности света, так и усовершенствование микроскопа подвигались вперед медленно. Спор между идеями Ньютона и Гюйгенса продолжался целое столетие. К представлению о волновой природе света примкнул знаменитый Эйлер. Но решен был вопрос лишь через сто с лишним лет Френелем талантливым исследователем, какого знала наука.

Чем отличается поток распространяющихся волн - идея Гюйгенса - от потока несущихся мелких частиц - идея Ньютона? Двумя признаками:

1. Встретившись, волны могут взаимно уничтожиться, если горб одной ляжет на долину другой. Свет + свет, сложившись вместе, могут дать темноту. Это явление интерференции , это кольца Ньютона, непонятые самим Ньютоном; с потоками частиц этого быть не может. Два потока частиц - это всегда двойной поток, двойной свет.

2. Через отверстие поток частиц проходит прямо, не расходясь в стороны, а поток волн непременно расходится, рассеивается. Это дифракция .

Френель доказал теоретически, что расхождение во все стороны ничтожно, если волна мала, но все же и эту ничтожную дифракцию он обнаружил и измерил, а по ее величине определил длину волны света. Из явлений интерференции, которые так хорошо известны оптикам, полирующим до "одного цвета", до "двух полос", он также измерил длину волны - это полмикрона (половина тысячной доли миллиметра). И отсюда стали неоспоримыми волновая теория и исключительная тонкость и острота проникновения в сущность живого вещества. С тех пор все мы в разных модификациях подтверждаем и применяем мысли Френеля. Но и не зная этих мыслей, можно усовершенствовать микроскоп.

Так это и было в XVIII столетии, хотя события развивались очень медленно. Сейчас трудно даже представить себе, что первая труба Галилея, в которую он наблюдал мир Юпитера, и микроскоп Левенгука были простыми неахроматическими линзами.

Огромным препятствием в деле ахроматизации было отсутствие хорошего флинта. Как известно, ахроматизация требует двух стекол: крона и флинта. Последний представляет стекло, в котором одной из основных частей является тяжелая окись свинца, обладающая непропорционально большой дисперсией.

В 1824 г. громадный успех микроскопа дала простая практическая идея Саллига, воспроизведенная французской фирмой Шевалье. Объектив, раньше состоявший из одной линзы, расчленен на части, его начали изготовлять из многих ахроматических линз. Так умножено число параметров, дана возможность исправления ошибок системы, и стало впервые возможным говорить о настоящих больших увеличениях - в 500 и даже 1000 раз. Граница предельного видения передвинулась от двух к одному микрону. Далеко позади оставлен микроскоп Левенгука.

В 70-х годах 19 века победоносное шествие микроскопии двинулось вперед. Сказавшим был Аббе (Е. Abbe).

Достигнуто было следующее:

Во-первых, предельное разрешение передвинулось от полумикрона до одной десятой микрона.

Во-вторых, в построении микроскопа вместо грубой эмпирики введена высокая научность.

В-третьих, наконец, показаны пределы возможного с микроскопом, и эти пределы завоеваны.

Сформирован штаб ученых, оптиков и вычислителей, работающих при фирме Цейсса. В капитальных сочинениях учениками Аббе дана теория микроскопа и вообще оптических приборов. Выработана система измерений, определяющих качество микроскопа.

Когда выяснилось, что существующие сорта стекол не могут удовлетворить научным требованиям, планомерно созданы были новые сорта. Вне тайн наследников Гинана - Пара-Мантуа (наследники Бонтана) в Париже и Ченсов в Бирмингаме - созданы были вновь методы плавки стекла, и дело практической оптики развито до такой степени, что можно сказать: Аббе оптическим снаряжением армии почти выиграл мировую войну 1914-1918 гг.

Наконец, призвав на помощь основы волновой теории света, Аббе впервые ясно показал, что каждой остроте инструмента соответствует свой предел возможности. Тончайший же из всех инструментов - это длина волны. Нельзя видеть объекты меньше полудлины волны - утверждает дифракционная теория Аббе,- и нельзя получить изображения меньше полудлины волны, т.е. меньше 1/4 микрона. Или с разными ухищрениями иммерсии, когда мы применяем среды, в которых длина волны меньше,- до 0,1 микрона. Волна лимитирует нас. Правда, лимиты очень мелкие, но все же это лимиты для деятельности человека.

Физик-оптик чувствует, когда на пути световой волны вставлен объект толщиной в тысячную, в десятитысячную, в отдельных случаях даже в одну стотысячную длину волны. Сама длина волны измерена физиками с точностью до одной десятимиллионной своей величины. Можно ли думать, что оптики, соединившие свои усилия с цитологами, не овладеют той сотой длины волны, которая стоит в поставленной ими задаче? Найдутся десятки способов обойти предел, поставленный длиной волны. Вам известен один из таких обходов, так называемый метод ультрамикроскопии. Если невидимые в микроскоп микробы расставлены далеко друг от друга, то можно осветить их сбоку ярким светом. Как бы они малы ни были, они заблестят, как звезда на темном фоне. Форму их нельзя определить, можно лишь констатировать их присутствие, но и это часто чрезвычайно важно. Этим методом широко пользуется бактериология.

Труды английского оптика Дж. Сиркса (1893) положили начало интерференционной микроскопии. В 1903 г. Р. Жигмонди (R. Zsigmondy) и Зидентопф (Н. Siedentopf) создали ультрамикроскоп, в 1911 г. Саньяком (М. Sagnac) был описан первый двухлучевой интерференционный микроскоп, в 1935 г. Зернике (F. Zernicke) предложил использовать метод фазового контраста для наблюдения в микроскопах прозрачных, слабо рассеивающих свет объектов. В середине XX в. был изобретен электронный микроскоп, в 1953 г. финским физиологом Вильской (A. Wilska) был изобретен аноптральный микроскоп.

Большой вклад в разработку проблем теоретической и прикладной оптики, усовершенствование оптических систем микроскопа и микроскопической техники внесли М.В. Ломоносов, И.П. Кулибин, Л.И. Мандельштам, Д.С. Рождественский, А.А. Лебедев, С.И. Вавилов, В.П. Линник, Д.Д. Максутов и др.

Литература:

Д.С. Рождественский Избранные труды. М.-Л., "Наука", 1964.

Рождественский Д.С. К вопросу об изображении прозрачных объектов в микроскопе. - Тр. ГОИ, 1940, т. 14

Соболь С.Л. История микроскопа и микроскопических исследований в России в XVIII веке. 1949.

Clay R.S., Court T.H. The history of the microscope. L., 1932; Bradbury S. The evolution of the microscope. Oxford, 1967.

С V в. до н. э. древнегреческие философы начали в своих теориях касаться истинного способа распространения света. Пифагор с потрясающей прозорливостью считал, что объекты становятся видимыми благодаря “выстреливаемым” ими крохотным частицам, попадающим в глаз человека (позднее его идея была воскрешена дважды в XVII и в XX веке).

Оптика – та наука, которая уже в древности была связана с практическими нуждами. Греческие геометры, приступив к исследованию оптических явлений, в том числе атмосферной оптики, обнаружили видимую прямолинейность распространения света: подсказкой здесь послужили отбрасываемые предметами тени. Затем учение о свете было включено в систему линейной геометрии; были разработаны геометрические методы образования изображения как от плоского, так и от кривого зеркала - исследования, которые они называли катоптрикой (наука об отражении лучей от зеркальных поверхностей). Методика прослеживания луча для нахождения изображения, впервые серьезно изученная во времена Пифагора, широко используется при оптических расчетах и в наши дни.

В 444 г. до н.э. греческий философ Эмпедокл выдвинул теорию, альтернативную идее Пифагора, по которой предметы становятся видимыми благодаря использованию неуловимого щупальца, простирающегося от глаза и захватывающего видимый предмет. Эта идея о существовании какого-то излучения, выходящего из глаза, стала известной под названием "теории окулярных пучков". Она получила широкое распространение в древности, обсуждалась на протяжении столетий, но встретила сильнейшее сопротивление в 350 г. до н.э. со стороны Аристотеля . Последний считал свет проявлением некоей разряженной среды, называемой пеллуцид и заполняющей все пространство. По его мнению, через эту среду передается определенного рода воздействие от объекта к глазу. Мысль эта, безусловно, созвучна высказанной в XIX в. идее распространения света как колебаний разряженного эфира.

Автором первых дошедших до нас греческих работ по оптике был Евклид . До нас дошла его “Оптика” - трактат по теории перспективы. На закон отражения он ссылается, как на нечто уже известное: он говорит, что этот закон доказывается в его "Катоптрике". “Катоптрика” Евклида не сохранилась. Вероятно, уже в древности это сочинение было оттеснено на второй план более объемной “Катоптрикой” Архимеда (теперь также утерянной), содержавшей строгое изложение всех достижений греческой геометрической оптики. Сам Архимед был не только теоретиком оптики, но и мастером оптических наблюдений, о чем свидетельствует описанная им методика определения видимого диаметра Солнца.

Ко II в. до н.э. теория построения изображений кривыми зеркалами достаточно продвинулась вперед, оправдывая предание, по которому Архимед поджег римский флот около Сиракуз, сконцентрировав солнечный свет “зажигательными” вогнутыми зеркалами. Кроме того, древним грекам было известно и зажигательное действие собирающих линз, описанное впервые в V в. до н.э. в комедии Аристофана “Облака”. О зажигательном действии стеклянных и хрустальных шаров пишут римляне Плиний и Сенека.

В эпоху поздней античности оптическими исследованиями занимались Геродот Александрийский и Птолемей .

Трактат Герона “Катоптрика”, содержит ряд новых моментов по сравнению с одноименными работами Евклида и Архимеда. В этом трактате Герон обосновывает прямолинейность световых лучей бесконечно большой скоростью их распространения, приводит доказательство закона отражения, основанное на предположении, что путь, проходимый светом, должен быть наименьшим из всех возможных.

В другом трактате - “О диоптре” - Герон описывает универсальный визирный инструмент – диоптру (как назвал его автор), сочетавший функции созданных гораздо позднее теодолита и секстанта.

Со времен Герона все ученые стали разделять оптику на катоптрику, т. е. науку об отражении, и диоптрику , т. е. науку об изменении направления световых лучей при попадании в прозрачные среды, например воду или стекло, или, как мы теперь говорим, о преломлении. Законы преломления изучались Евклидом и Аристотелем, но наиболее подробно исследовались со времен Клеомеда (50 г. до н.э.).

Таким образом, открытые в античности основные оптические эффекты определили развитие как фундаментальной, так и прикладной оптики и легли в основу количественных оптических исследований средних веков. Незнание строения глаза и механизма зрения не позволили ученым античного мира открыть возможность построения действительных изображений и, как следствие, ими не был создан ни один оптический прибор (диоптра Герона так и не нашла практического применения).

После античного периода развития науки о световых явлениях на протяжении почти 900 лет оптические исследования принесли мало нового. Возрождение античного знания и дальнейшее развитие науки началось в арабском мире.

Оптику арабы называли «илм ал-маназир» - наука о зрительных инструментах.

В то время “Оптика” Альхазена была первым серьезным исследованием, остававшимся вплоть до XVII века лучшим руководством, несмотря на дополнения и изменения, вносимые в него позднейшими исследователями. В своем трактате он не только устанавливает возможность получения действительных изображений с помощью зеркал и прозрачных преломляющих сред, но также опровергается теория окулярных пучков, и даются объяснения некоторым оптическим иллюзиям. Исследовал он и “прозрачные сферы” из горного хрусталя и стекла, а также их шаровые сегменты. На латинский язык трактат Альхазена был переведен только в 1572г.

Крупнейшим сочинением по оптике, написанным в средние века, была “Книга оптики” Ибн ал-Хасайма . На основе изучения анатомии глаза ученый рассматривает механизм зрения. Далее рассматриваются зрительное восприятие и обманы зрения и весьма подробно изучается отражение света от плоских, сферических, цилиндрических и конических зеркал и преломление света. Оптические исследования Ибн ал-Хасайма были основаны на исключительно высокой точности эксперимента и на широком использовании математических доказательств. Кроме “Книги оптики”, Ибн ал-Хасайма написал еще целый ряд оптических трактатов, в частности, “Книгу о зажигательной сфере”, лежащую в основе теории линз, два трактата о зажигательных зеркалах - упоминавшийся выше трактат о параболических зеркалах и трактат о сферических зеркалах, и “Книгу о форме затмений”, содержащую теорию камеры-обскуры. “Книга оптики” Ибн ал-Хасайма была переработана в ХIII в и была переведена на латинский язык под названием Opticae thesaurus (“Сокровище оптики”) и легла в основу оптических исследований ученых XIII-XIV вв. Вителло, Пеккама и Роджера Бэкона, а через них Кеплера, “Оптическая астрономия” которого носит подзаголовок “Добавление к Вителло”.



Независимо от Ибн ал-Хасайма камеру-обскуру рассматривал ал-Бируни в “Тенях”, где были впервые описаны также явления дифракции и интерференции света.

Создание линзы, также приходящееся на это время, является первой в истории попыткой расширить возможности сенсорного аппарата человека. Если бы арабы создали оптику и ничего больше, то и в этом случае они бы внесли важнейший вклад в науку.

В Европе после крушения Римской империи вплоть до X - XI веков культурная и научная жизнь переживала период затишья. В области оптики единственным важным достижением за это время было изобретение в XIII в. очков (первые очки были изобретены Сальвинио дели Арлеати в Италии в 1285 г.), тогда же появились наконец первые серьезные исследования по оптике.

Наиболее известны работы в этой области Роджера Бэкона , много внимания уделявшего преломлению и отражению в линзах и зеркалах. Он исследовал положение зажигательного фокуса сферического и параболического отражателя, математически доказал наличие продольной аберрации у вогнутого сферического зеркала, пришел к выводу “... что прозрачные тела могут быть так обработаны, что отдаленные предметы покажутся приближенными”.

Большое влияние на средневековые оптические исследования оказал написанный в 1271г. десятитомный трактат по оптике польского физика Вителло , в котором описаны многочисленные опыты и наблюдения за природными оптическими явлениями и разработаны важные для художников вопросы перспективы. Являясь в большой степени удачной компиляцией работ Евклида, Птолемея и Альхазена, трактат на долгие годы стал основой университетских оптических курсов, довольно слабо связанных с прикладными оптическими задачами. Этой оторванностью чистой науки от практики объясняется и тот факт, что величайшее оптическое изобретение - очки - были открыты в XIII веке не университетскими учеными, а итальянскими мастерами шлифования и полирования эмпирическим путем. Более того, известны негативные отзывы ученых-оптиков того времени на ношение очков: “Основная цель зрения - знать правду, линзы для очков дают возможность видеть предметы большими или меньшими, чем они есть в действительности, ... иной раз перевернутыми, деформированными и ошибочными, следовательно, они не дают возможности видеть действительность. Поэтому, если вы не хотите быть введенными в заблуждение, не пользуйтесь линзами”. Однако остановить развитие очкового ремесла было невозможно, и, начиная с конца XV века, происходит резкий сдвиг оптики в практическую область, во многом благодаря трудам Леонардо да Винчи .

Говоря о творчестве Леонардо, нельзя разделять его деятельность как ученого и инженера и его художественную деятельность. Сам он такое разделение не делал. Идея союза науки и практики, пронизывающая все энциклопедическое творчество Леонардо, проявилась и в его оптических исследованиях. В его “Атлантическом кодексе” и других манускриптах были поставлены и решены задачи построения хода лучей в глазе, рассмотрены вопросы аккомодации и адаптации глаза, дано научное объяснение действия линз, зеркал и очков, встречаются вопросы аберраций и рисунки каустических поверхностей, приведены результаты первых фотометрических исследований, описаны технологии изготовления линз и зеркал. Изучение бинокулярного зрения привело Леонардо да Винчи к созданию около 1500г. стереоскопа , он изобрел ряд осветительных устройств, в том числе ламповое стекло, мечтал о создании телескопа из очковых линз. В 1509г. им была предложена конструкция станка для шлифовки вогнутых зеркал, подробно описано изготовление параболических поверхностей.

В Нидерландах (1590 г.) потомственные оптики Захарий и Ханс Янсены смонтировали две выпуклые линзы внутри одной трубки (рис.1.), т. е. фактически создав первый микроскоп и заложив основы для создания сложных микроскопов.

Дело, начатое Леонадо да Винчи, было продолжено его соотечественником Джованни Баттста де ла Порта , посвятившим оптическим исследованиям два произведения: “Натуральная магия” и “О преломлении”. Он усовершенствовал камеру-обскуру , добавив собирающую линзу, и выдвинул идею проекционного фонаря . Вскоре де ла Порта делает попытку построения хода лучей в линзах и даже приводит оптическую систему телескопа , утверждая, что ему удалось видеть на большом расстоянии мелкие предметы, однако никаких доказательств не приводит. Свой приоритет в изобретении зрительной трубы он отстаивает в письме князю Федерико Чези, написанном в августе1609г., которое сопровождается рисунком трубы по “схеме Галилея”, однако в девятой книге “О преломлении”, на которую ссылается Порта, нет подтверждающих его слова сведений, поэтому вопрос о его приоритете в изобретении зрительной трубы является недоказанным. Первая зрительная труба появилась на рубеже XVI и XVII веков в Голландии, о чем сообщил в 1608г. очковых дел мастер Липперсгейм.

Это известие побудило Галилео Галилея через год в Падуе построить свой телескоп (рис.2.) и тем самым положить начало современной астрономии.

В 1610 году он опубликовал труд “Звездный вестник”, который стал самой ходкой научной книгой того времени. В ней он сжато и ясно излагал свои наблюдения. Книга вызвала огромную сенсацию. Надо сказать, что многие открытия Галилея получили признание в церковных кругах. (Папа Урбан VIII считался его другом.). Однако доминиканцы и иезуиты оказались сильнее папского покровительства. По их доносу в 1633 году Галилей был предан суду инквизиции в Риме и чуть было не разделил участь Бруно. Лишь ценой отречения от своих взглядов он спас себе жизнь. Но “Звездный вестник” послужил могучим стимулом к созданию разнообразных конструкций телескопов и других оптических приборов. Путем логических рассуждений Галилей пришел к выводу о необходимости сочетания выпуклой и вогнутой линзы для получения искомого эффекта увеличения. Он первым понял, что качество изготовления линз для очков и и для зрительных труб должно быть совершенно различным, усовершенствовал технологию изготовления линз, что позволило ему создать инструмент, увеличивающий в 32 раза, в то время как все существовавшие до него зрительные трубы давали увеличение лишь в 3 - 6 раз.

Галилею также принадлежит приоритет в конструировании микроскопа, который он создал, подбирая соответствующее расстояние между линзами, при котором оказывались увеличенными не удаленные, а близкие предметы. О наблюдении насекомых имеется запись от 1614г., а в 1624г. он посылает сконструированный им микроскоп Федерико Чези с описанием наводки на резкость. Отметим, что созданные во второй половине XVII в. Левенгуком однолинзовые микроскопы были намного проще и менее качественными.

После смерти Галилея должность придворного математика герцога Тосканского получает его ученик Эванджелиста Торричелли (1608-1647), которому суждено было открыть секрет контроля качества обработки линз. Научившись у своего великого учителя искусству шлифовки линз, он упорно ищет ответ на вопрос: как проверить точность изготовления линз? Так как в первой половине XVII века еще не были известны явления интерференции и дифракции, то результат работы шлифовальщиков целиком зависел от случая. В 1646г. им была сделана линза диаметром 83 мм, которая и сейчас относится к классу современной точной оптики. Письма Торричелли, датированные 1644г., доказывают, что это не было случайностью: “В конце концов... изобретение, касающееся стекол, у меня в руках. ... За несколько последних дней я один обработал шесть стекол, из которых два не уступали наилучшему из тысячи стекол, сделанных за тридцать лет Фонтаной (линзы неаполитанского мастера-оптика были самыми совершенными в то время). Хотя Торричелли так и не открыл свой секрет и не опубликовал ни одной работы по оптике, полагают, что он заметил интерференционные кольца, возникающие при притирке линзы с поверхностью формы и использовал их для оценки качества обрабатываемой поверхности. Кроме изготовления зрительных труб и телескопов, Торричелли занимался конструированием простых микроскопов, состоящих всего из одной крошечной линзы, которую он получал из капли стекла (расплавляя над пламенем свечи стеклянную палочку). Именно такие микроскопы получили затем широкое распространение благодаря виртуозности Антони ван Левенгука . Подобно тому, как в руках Галилея телескоп обнаружил тайну звезд, микроскоп в руках исследователей 17 века (кроме Левенгука это Мальпиги , Гук и другие) открыл двери в мир бесконечно малого. Насекомые, части растений, бактерии и т.д. - все это стало предметом исследования, что привело к появлению и расцвету многих биологических дисциплин

Фундамент современной научной оптики линз заложил выдающийся немецкий астрономИоганн Кеплер , родившийся в 1571г. При точном расчете оптимальных линз для любых целей существенно знать правильный закон преломления света в стекле. Этот закон еще не был известен, и, конечно, не знал его и Кеплер. И все же он придумал такие системы линз для телескопов, что даже в наши дни кеплеровский окуляр находит применение в современных оптических приборах. Помимо интенсивных занятий астрономией, он изобретает зрительную трубу, состоящую из двух положительных линз (телескоп Кеплера) с большим полем зрения и промежуточным перевернутым действительным изображением, в плоскости которого можно располагать визирующее устройство. В 1604г. он написал "Дополнение к Виттеллию", в котором четко описывает перевернутое изображение на сетчатке глаза, завершив исследования Альхазена и Леонардо да Винчи в области физиологии зрения. Здесь же он приводит формулу, связывающую фокусное расстояние линзы с положениями предмета и его изображениями на оптической оси, и вводит ряд новых терминов (сходимость и расходимость пучков , оптическая ось , фокус системы ). Однако его главным трудом по оптике стала "Диоптрика", написанная всего за два месяца 1610г. под впечатлением открытий Галилея. В 1611 г. Кеплер разработал схему много линзового микроскопа

Таким образом, в первом 10-летии XVII в. Кеплер научно объяснил ряд оптических явлений (отражение, преломление). Он впервые ввел понятие фокуса и дал глубокий анализ механизма зрения.

1642 год - год смерти Галилея и год рождения Ньютона . К этому году старая картина мира была разрушена, ее место заняли начальные положения новой. Ньютон разработал фундаментальные концепции новой картины мира, названной классической. Не менее значительны и его открытия в оптике. Уже в 26-летнем возрасте он становится преемником своего учителя Барроу в качестве профессора кафедры математики. Его первые лекции касались оптики. В них он изложил свои открытия и набросал корпускулярную теорию света, согласно которой свет представляет собой поток частиц, а не волны, как утверждали Гюйгенс и Гук.

В 1668 году Ньютон собственными руками построил отражательный телескоп (рис.3.)– и использовал его для наблюдений за спутниками Юпитера. Он, несомненно, ставил своей целью проверить, подчиняется ли движение этих спутников закону всемирного тяготения. При избрании в 1672 году в Королевское Общество Ньютон представил работы о телескопах и корпускулярную теорию света. Для рассмотрения работ по оптике была назначена комиссия из трех человек, включая Гука, который противопоставил ньютоновской свою теорию - волновую.

Ньютон первым попытался избежать помехи окрашивания объекта при рассмотрении его через телескоп (явление хроматической аберрации ). Благодаря блестящему сочетанию экспериментальной техники и логики он смог доказать, что цвета создаются не призмой или радугой, а являются компонентами обычного белого цвета.

Примерно в те же годы интерференцию света исследовал английский физик Роберт Гук . Он изучал цвета мыльных пленок и тонких пластинок из слюды. При этом он обнаружил, что эти цвета зависят от толщины мыльной пленки или слюдяной пластинки. Явление интерференции света в тонких пленках Гук объяснял тем, что от верхней и нижней поверхности тонкой, например мыльной, пленки происходит отражение световых волн, которые, попадая в глаз, производят ощущение различных цветов. Будучи разносторонним ученым, Гук занимался механикой, астрономией, оптикой, акустикой, геологией и анатомией, в 1655г. зарисовал срез пробки с ячейками, которые назвал «клетками».

Усовершенствование оптики позволило Антони ван Левенгуку (1632-1723) в 1674 г. изготовить линзы с увеличением, достаточным для проведения простых научных наблюдений (рис.4.). Наряду с Левенгуком в XVII в. сразу несколько ученых занимались микроскопией. Декарт в своей книге "Диоптрика" (1637 г.) описал сложный микроскоп, составленный из двух линз - плоско-вогнутой (окуляр) и двояковыпуклой (объектив).

Наблюдения Левенгука поставили человечество лицом к лицу с величайшей из тайн - тайной живого вещества. С этого времени микроскопия биологических объектов становится мощным двигателем науки.

В 1680 - Ливенгук открыл инфузории, красные кровяные тельца, сперматозоиды (совместно с Гаммом ), позднее он же открыл мир бактерий. Марчело Мальпиги (1628-1694) изучал развитие цыпленка в яйце. Он первым применил микроскоп для изучения строения мозга, сетчатки, нервов, селезенки, почек и др. Используя микроскоп со 180-кратным увеличением, описал (1661) сеть капиллярных сосудов, соединяющих артерии с венами.В 1666 наблюдал почечные канальцы и сформулировал первые представления о мочеобразовании. Мальпиги считают основателем анатомии беспозвоночных, начало которой он положил в своем «Трактате о тутовом шелкопряде». Открыл сосудистые элементы стебля, установил наличие восходящего и нисходящего токов веществ в растениях. Другие ботанические работы касались внешней анатомии растений: органов их размножения, листьев. Мальпиги – автор двухтомного труда «Анатомия растений» (1675–1679). Именем Мальпиги названы многие открытые им органы и структуры: мальпигиевы тельца (в почках и селезенке), мальпигиев слой (в коже), мальпигиевы сосуды.

XVII в. был временем исключительного напряжения сил. Далее события развивались гораздо более спокойно. Вообще XVIII столетие не блещет поражающими гениальными открытиями, несмотря на то, что это - эпоха организации научных исследований, основания академий во многих стран. Лондонское общество возникает незадолго до конца XVII, французское - приблизительно в те же годы; в 1725 г. Петр I учредил Петербургскую академию, и до 1750 г. появились академии практически во всех странах Европы. Несомненно, работа всюду велась огромная, но она была не столь видной. Так, по крайней мере, можно объяснить себе блеск XVII столетия по сравнению с XVIII-ым

На протяжении XVIII века из зоологии и ботаники выделились как самостоятельные науки микроскопическая анатомия , эмбриология , к 1800 году – гистология (выступил со своим учением французский анатом К.Биш (1801)). Огромную роль в развитии гистологии сыграла клеточная теория, которую сформулировали к 1839 г. Шлейден и Шванн

Бурное развитие науки требовало все больше микроскопической техники с все более высоким качеством оптики.

Первая труба Галилея, в которую он наблюдал мир Юпитера, и микроскоп Левенгука были простыми неахроматическими линзами. Ньютон был убежден, что вообще ахроматизация , уничтожение цветных каемок, невозможна.

Во всех сложных микроскопах XVII - XVIII вв. при увеличениях выше 120 - 150 раз сферическая и хроматическая аберрации сильно искажали изображение. Поэтому становится понятным то предпочтение, которое микроскописты того времени, начиная с А. Левенгука, отдавали простому однолинзовому микроскопу.

Опыты в этом направления все же делались, и Доллонду , английскому мастеру, удалось без всякой теории рядом удачных проб построить ахроматический объектив для зрительной трубы, а Эйлер теоретически объяснил ошибку Ньютона и вместе со своим учеником, академиком Фуссом , дал точный рецепт, как изготовить ахроматический микроскоп. Академик Петербургской академии Эпинус такой микроскоп выполнил. По описаниям инструмент этот весьма странного для нас и несовершенного вида. Он в 1 м длины, объектив у него фокусом в 18 см (не миллиметров) и его максимальное увеличение 70. Т.е., он дает меньшее увеличение, чем левенгуковы линзы.

Огромным препятствием в деле ахроматизации было отсутствие хорошего флинта .

Все оптические стекла отличаются друг от друга характером зависимости показателя преломления от длины волны. Основными характеристиками стекол являются показатель преломления для основной длины волны,общая дисперсия и коэффициент относительной дисперсии (число Аббе). Чем меньше число Аббе, тем больше дисперсия, то есть сильнее зависимость показателя преломления от длины волны. По числу Аббе оптические стекла делят на две группы:

- кроны ,

- флинты.

Комбинация стекол, принадлежащим различным группам, дает возможность создавать высококачественные оптические системы. Кроны и флинты - это основные группы оптических стекол. Ахроматизация требует двух стекол: крона и флинта. Последний представляет стекло, в котором одной из основных частей является тяжелая окись свинца, обладающая непропорционально большой дисперсией. Вследствие тяжести при плавке она ложится на дно горшка, а так как мешать стекло в то время не умели, то стекла получались очень случайного состава и очень неоднородные. Мешали тогда, погружая на железной палке картошку и куски дерева так, чтобы они доходили до дна горшка. Сгорающая масса пузырилась, бурлила и хоть отчасти перемешивала стекло.

Дальнейшие шаги на пути ахроматизации микроскопа были предприняты одновременно разными мастерами в Германии, Англии и Франции.

Громадным успехом в деле оптики было начинание швейцарца Гинана , который всю свою жизнь положил на выработку однородного стекла. Он погружал в расплавленное стекло полый шамотный конус и железным крюком водил его в горшке, водил часами, иногда днями. Это те приемы перемешивания, которые по существу применяются и до сих пор. Потомки Гинана завезли его метод в Париж (Бонтон ) и Бирмингам (братья Ченсы ), где секреты Гинана тщательно хранились до мировой войны 1914 г.

В 1824 г. громадный успех микроскопа дала простая практическая идея Саллига , воспроизведенная французской фирмой Шевалье . Объектив, раньше состоявший из одной линзы, расчленен на части, его начали изготовлять из многих ахроматических линз . Так, увеличив число параметров, появилась возможность исправления ошибок оптической системы, и стало впервые возможным говорить уже по настоящему о больших увеличениях - в 500 и даже 1000 раз. Граница предельного видения передвинулась от двух к одному микрону.

Биология ответила быстрым успехом.

Влияние клеточной теории и успехи микроскопической техники начиная с 40-х годов XIX столетия вызвали бурное развитие цитологических исследований . Ботаники и зоологи делали важнейшие открытия в области строения и развития клеток. В сущности, тогда именно возникают те науки, которые есть «микроскопические» по существу - цитология - наука о клетке и бактериология (микробиология) .

Микроскопические фирмы Oberhauser и Hartnack , Chevalier , Nachet , Ross и особенно Amici состязаются друг с другом, кто лучше приготовит сложный объектив, составленный из многих линз. Чисто эмпирически определяются число линз , их расстояния и кривизна их поверхностей . В громадной практике соревнующихся выясняется, что особенное значение для видения мельчайших объектов имеет величина угла , под которым лучи вступают в первое стекло объектива.

Впереди всех идет Амичи , который довел этот угол до 100° и более. Он впервые применяет иммерсию. В 1827 г. Амичи разрабатывает апланатический фронтальный сегмент . Этот флорентийский профессор физики и делатель микроскопов, лидирует в то время среди всех изобретателей в микроскопии.

1846 году в это состязание включается Карл Цейсс , создав в Йене мастерскую точной механики и оптики, и с 1847 приступил к серийному производству микроскопов. В результате в середине XIX столетия граница видимости от одного микрона отступила до полумикрона.

В 70-е годы благодаря деятельности доктора Эрнста Аббе (1840-1905) создание микроскопов получило теоретическую основу.

Во времена до Аббе микроскопов не рассчитывали, а усовершенствовали линзы объектива путем постепенных проб. Если взять самую передовую книгу по микроскопии того времени - Гартинга 1859 г., то в ней нет почти ни одной формулы. В ней масса интересных рецептов, как нужно делать микроскопы, масса исторических сведений. Но чувствуется, что искусство делать микроскопы было тогда именно искусством, а не техническим предприятием, основанным на точных научных данных.

Все это изменил Аббе. Был сформирован штаб ученых, оптиков и вычислителей, работающих при фирме Цейсса. В капитальных сочинениях Аббе дана теория микроскопа и вообще оптических приборов. Выработана система измерений, определяющих качество микроскопа. Аббе провел такую работу, что позволило ему в 1872 году предложить целый ряд объективов, включающий 17 типов, в том числе три иммерсионных системы, позволивших получить еще невиданное до того времени качество изображения. Все это в результате привело к тому, что:

Во-первых, предельное разрешение передвинулось от ½ микрона до ¼ микрона.

Во-вторых, в построении микроскопа вместо грубой эмпирики введена высокая научность.

В-третьих, наконец, показаны пределы возможного светового микроскопа: нельзя видеть объекты меньше полудлины волны - утверждает дифракционная теория Аббе, - и нельзя получить изображения меньше полудлины волны, т.е. меньше 0,2 микрона (формула теоретически возможной разрешающей способности микроскопа – d = λ/2n sinα).

Когда выяснилось, что существующие сорта стекол не могут удовлетворить научным требованиям, планомерно были созданы новые сорта оптического стекла. На фирме Цейса появляется еще один целеустремленный ученый, химик в области стекла Отто Шотт (1851-1935). Многочисленные эксперименты, необходимые для получения новых сортов стекол и определения их свойств, были связаны с большими затратами. В результате этого выиграла не только микроскопия, но и был основан всемирно известный Иенский стекольный завод «Schott&Genossen» . Вне тайн наследников Гинана - Пара-Мантуа в Париже и Ченсов в Бирмингаме, именно Шоттом были вновь разработаны методы плавки оптического стекла.

Профессор Август Келер (1866-1948) был первоначально сотрудником Карла Цейсса в Иене и опубликовал уже в 1893 году предписания по правильному освещению микроскопических препаратов.

Он разработал великолепно продуманную систему освещения для микроскопа, позволяющую на практике использовать полную разрешающую способность объективов Аббе, в частности для микрофотографии. Введенный Келером вид освещения за счет применения конденсора, разработанного Аббе, дает возможность получения равномерного освещения объекта и изображения, а также добиться повышения разрешающей способности.

Таким образом, к концу XIX века световые микроскопы приблизились к теоретически допустимому разрешению. Видимая область спектра находится в переделах 0,4-0,7 мкм, а т.к. теоретически разрешение составляет ½ длины волны, то 0,2 мкм является пределом для разрешения светового микроскопа.

В дальнейшие годы шла разработка новых методов контраста в микроскопии – темное поле, фазовый контраст, английский оптик Г. Сорби создал первый микроскоп для наблюдения объектов в поляризованном свете , флуоресцентный (люминесцентный) метод (создан в1911 г. русским ботаником М.С. Цветом), интерференционный контраст (первый микроскоп, основанный на основе этого метода разрабатывает и создает в 1930 г. Лебедев) и другие.


Основы оптики

Все оптические явления, в том числе и формирование изображения в микроскопе, изучает оптика - учение о физических явлениях, связанных с распространением и взаимодействием с веществом электромагнитных волн, длина которых лежит в интервале 10 -4 - 10 -9 м.

На рис. 5. показан участок шкалы электромагнитного излучения в длинах волн, соответствующий оптическому диапазону. Границы оптического диапазона, а также границы между его участками установлены на основе экспериментальных данных и не являются абсолютно точными.


Рис. 5. Оптический диапазон .

Большое значение этой области спектра электромагнитных волн для практической деятельности человека обусловлено прежде всего тем, что внутри нее в узком интервале длин волн от 0,4 до 0,7 мкм лежит участок видимого света, непосредственно воспринимаемого человеческим глазом (рис.6).

Для частот, более низких, чем частоты оптического диапазона, нельзя построить оптические системы по законам геометрической оптики, а электромагнитное излучение более высоких частот, как правило, либо проходит сквозь любое вещество, либо разрушает его.

Специфика оптического диапазона заключается в его двух главных особенностях:

В оптическом диапазоне выполняются законы геометрической оптики,

В оптическом диапазоне свет очень слабо взаимодействует с веществом.

Наиболее полное представление о формировании изображения дает т.н. геометрическая оптика, которая основывается на представлении о прямолинейном распространении света. Геометрическая оптика, отвлекаясь от волновой природы света, описывает его распространение с помощью лучей.

И сейчас попытаемся разобрать основные положения геометрической оптики

Луч - это прямая или кривая линия, вдоль которой распространяется энергия светового поля. В волновой оптике световой луч совпадает с направлением нормали к волновому фронту, а в корпускулярной – с траекторией движения частицы. В случае точечного источника в однородной среде световые лучи представляют собой прямые линии, выходящие из источника во всех направлениях. На границах раздела однородных сред направление световых лучей может изменяться вследствие отражения или преломления, но в каждой из сред они остаются прямыми. Также в соответствии с опытом принимается, что при этом направление световых лучей не зависит от интенсивности света.

Отражение .

Когда свет отражается от полированной плоской поверхности , угол падения (измеренный от нормали к поверхности) равен углу отражения (рис. 7), причем отраженный луч, нормаль и падающий луч лежат в одной плоскости. Если на плоское зеркало падает световой пучок, то при отражении форма пучка не изменяется; он лишь распространяется в другом направлении. Поэтому, глядя в зеркало, можно видеть изображение источника света (или освещенного предмета), причем изображение кажется таким же, как и исходный объект, но находящимся за зеркалом на расстоянии, равном расстоянию от объекта до зеркала. Прямая, проходящая через точечный объект и его изображение, перпендикулярна зеркалу.

Отражение от кривых поверхностей происходит по тем же законам, что и от прямых, причем нормаль в точке отражения проводится перпендикулярно касательной плоскости в этой точке. Простейший, но самый важный случай – отражение от сферических поверхностей. В этом случае нормали совпадают с радиусами. Здесь возможны два варианта:

1. Вогнутые зеркала : свет падает изнутри на поверхность сферы. Когда пучок параллельных лучей падает на вогнутое зеркало (рис. 8,а ), отраженные лучи пересекаются в точке, расположенной на половине расстояния между зеркалом и центром его кривизны. Эта точка называется фокусом зеркала , а расстояние между зеркалом и этой точкой – фокусным расстоянием . Расстояние s от объекта до зеркала, расстояние s  от зеркала до изображения и фокусное расстояние f связаны формулой 1/f = (1/s ) + (1/s ), где все величины следует считать положительными, если их измерять влево от зеркала, как на рис. 9,а . Когда объект находится на расстоянии, превышающем фокусное, форми

Человек долгое время жил в окружении невидимых организмов. Постоянно сталкиваясь с продуктами их жизнедеятельности. Изготавливал вино, уксус, выпекал хлеб и многое другое. Страдал от заболеваний вызванных этими организмами. Не подозревая об их существовании. Ведь их размеры настолько малы, что невидимы человеческому глазу.
Ещё в Древнем Вавилоне пытались расширить человеческие возможности. Во время раскопок были найдены двояковыпуклые линза. На сегодня простейшие оптические приборы. Это был шаг в микромир. В дальнейшем в 16-17 века благодаря развитию астрономии были созданы подзорные трубы. Было замечено, если линзы расположить наоборот, можно рассмотреть очень мелкие предметы. Зная это, в 1610 году Г. Галилей создал микроскоп.
Позднее физик, изобретатель Р. Гук сконструировал микроскоп из двух двояковыпуклых линз. Он давал увеличение в 30 раз. При рассмотрении среза пробки он увидел ячейки. Впоследствии они были им названы клетками. Все дальнейшее изучение микромира было связано с усовершенствованием микроскопов.
Большой вклад в изучении микроорганизмов внес Антони ван Левенгук. Изначально его заинтересовало строение льняных волокон. Для их рассмотрения он отшлифовал несколько грубых линз. В дальнейшем он увлекся этой работой. Стал усовершенствовать линзы. Он их называл «микроскопии». Свои одинарные двояковыпуклые стекла вставлял в оправу из серебра или латуни. Имели вид современных луп. В дальнейшем он создал микроскоп с подсветкой. Их увеличительные способности были на тот период наибольшими. Увеличивали в 200-270 раз. Будучи от природы любознательным он рассматривал все: кровь, зубной налет, слюну и многое другое. За свои работы был принят в Лондонское Королевское общество. Он пришел к выводу, что все вокруг заселено маленькими организмами. По его мнению, они были устроены как животные. Известно, что Петр первый побывал у него и привез в Россию первый микроскоп. В дальнейшем по его образцу их выпускали в России.
Развитие наук требовало усложнение увеличительных приборов. И в 1863 году появился поляризационный. С 1931 года пришло время электронных микроскопов. Он был гораздо мощней, чем световой. Его возможности позволили рассмотреть не только клетку, но и её органеллы. Началось время развития гистологии (наука о тканях) и цитологии (наука о клетке). Позже его создателю Э. Руска была вручена Нобелевская премия.
Усовершенствование электронного микроскопа привело к созданию лазерного прибора. В основе лежит лазерный пучок. Это приводит к тому, что появилась возможность рассматривать в более глубоких слоях. Его модернизация привела к созданию лазерного рентгеновского микроскопа. На сегодняшний день с помощью увеличительных приборов можно не просто увидеть микромир, но и сфотографировать. Сделать 3 D проекцию. Если на первых этапах создания увеличительных приборов их размеры были не большие. Современное оборудование же бывает не просто больших, а очень больших размеров. В тоже время они стали более доступные. Их можно приобрести для личного пользования.
Создание микроскопа и его дальнейшее совершенствование позволило развиться многим наукам. Первой, из которых стала микробиология. Его используют во многих смежных дисциплинах: медицине, ботаники, геологии, химии, энтомологии (наука о насекомых), физики и других. Благодаря ему было сделано большое количество научных открытий. Появилась возможность понять механизм многих процессов. Научиться справляться с опасными заболеваниями, которые вызываются микроорганизмами.

Что ни говорите, а микроскоп является одним из важнейших инструментов ученых, одним из главных их оружий в познании окружающего мира. Как появился первый микроскоп, какая история микроскопа от средних веков и до наших дней, какое строение микроскопа и правила работы с ним, ответы на все эти вопросы Вы найдете в нашей статье. Итак, приступим.

История создания микроскопа

Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.

Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.

А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен – изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности. Как бы там ни было, но точно узнать был ли Захарий Ясен изобретателем микроскопа или нет, мы, к сожалению, не можем.

А вот репутация Галилео Галилея в этом плане безупречна. Этого человека мы знаем, прежде всего, как, великого астронома, ученого, гонимого католической церковью за свои убеждения о том, что Земля вращается вокруг , а не наоборот. Среди важных изобретений Галилея – первый телескоп, с помощью которого ученый проник своим взором в космические сферы. Но сфера его интересов не ограничивалась лишь звездами и планетами, ведь микроскоп, это по сути тот же телескоп, но только наоборот. И если с помощью увеличительных линз можно наблюдать за далекими планетами, то почему бы не обратить их мощь в другое направление – изучить то, что находится у нас «под носом». «Почему бы и нет», – наверное, подумал Галилей, и вот, в 1609 году он уже представляет широкой публике в Академии деи Личеи свой первый составной микроскоп, который состоял из выпуклой и вогнутой увеличительных линз.

Старинные микроскопы.

Позднее, спустя 10 лет, голландский изобретатель Корнелиус Дреббель усовершенствовал микроскоп Галилея, добавив в него еще одну выпуклую линзу. Но настоящую революцию в развитии микроскопов совершил Христиан Гюйгенс, голландский физик, механик и астроном. Так он первым создал микроскоп с двухлинзовой системой окуляров, которые регулировались ахроматически. Стоит заметить, что окуляры Гюйгенса применяются и по сей день.

А вот знаменитый английский изобретатель и ученый Роберт Гук навеки вошел в историю науки, не только как создатель собственного оригинального микроскопа, но и как человек, сделавший при его помощи великое научное открытие. Именно он первым увидел через микроскоп органическую клетку, и предположил, что все живые организмы состоят из клеток, этих мельчайших единиц живой материи. Результаты своих наблюдений Роберт Гук опубликовал в своем фундаментальном труде – Микрографии.

Опубликованная в 1665 году Лондонским королевским обществом, эта книга тут же стала научным бестселером тех времен и произвела подлинный фурор в научном сообществе. Еще бы, ведь в ней имелись гравюры с изображением увеличенной в микроскоп , вши, мухи, клетки растения. По сути, этот труд представлял собой удивительное описание возможностей микроскопа.

Интересный факт: термин «клетка» Роберт Гук взял потому, что клетки растений ограниченные стенами напомнили ему монашеские кельи.

Так выглядел микроскоп Робета Гука, изображение из «Микрографии».

И последним выдающимся ученым, который внес свой вклад в развитие микроскопов, был голландец Антонии ван Левенгук. Вдохновленный трудом Роберта Гука, «Микрографией», Левенгук создал свой собственный микроскоп. Микроскоп Левенгука, хотя и обладал лишь одной линзой, но она была чрезвычайно сильной, таким образом, уровень детализации и увеличения у его микроскопа был лучшим на то время. Наблюдая в микроскоп живую природу, Левенгук сделал множество важнейших научных открытий в биологии: он первым увидел эритроциты, описал бактерии, дрожжи, зарисовал сперматозоиды и строение глаз насекомых, открыл и описал многие их формы. Работы Левенгука дали огромный толчок к развитию биологии, и помогли привлечь внимание биологов к микроскопу, сделали его неотъемлемой частью биологических исследований, аж по сей день. Такая в общих чертах история открытия микроскопа.

Виды микроскопов

Далее с развитием науки и техники стали появляться все более совершенные световые микроскопы, на смену первому световому микроскопу, работающему на основе увеличительных линз, пришел микроскоп электронный, а затем и микроскоп лазерный, микроскоп рентгеновский, дающие в разы более лучший увеличительный эффект и детализацию. Как же работают эти микроскопы? Об этом дальше.

Электронный микроскоп

История развития электронного микроскопа началась в 1931 году, когда некто Р. Руденберг получил патент на первый просвечивающий электронный микроскоп. Затем в 40-х годах прошлого века появились растровые электронные микроскопы, достигшие своего технического совершенства уже в 60-е годы прошлого века. Они формировали изображение объекта благодаря последовательному перемещению электронного зонда малого сечения по объекту.

Как работает электронный микроскоп? В основе его работы лежит направленный пучок электронов, ускоренный в электрическом поле и выводящий изображение на специальные магнитные линзы, этот электронный пучок намного меньше длины волн видимого света. Все это дает возможность увеличить мощность электронного микроскопа и его разрешающую способность в 1000-10 000 раз по сравнению с традиционным световым микроскопом. Это главное преимущество электронного микроскопа.

Так выглядит современный электронный микроскоп.

Лазерный микроскоп

Лазерный микроскоп представляет собой усовершенствованную версию электронного микроскопа, в основе его работы лежит лазерный пучок, позволяющий взору ученого наблюдать живые ткани на еще большой глубине.

Рентгеновский микроскоп

Рентгеновские микроскопы используются для исследования очень маленьких объектов, имеющих размеры сопоставимые с размерами рентгеновской волны. В основе их работы лежит электромагнитное излучение с длиной волны от 0,01 до 1 нанометра.

Устройство микроскопа

Конструкция микроскопа зависит от его вида, разумеется, электронный микроскоп будет отличаться своим устройством от светового оптического микроскопа или от рентгеновского микроскопа. В нашей статье мы рассмотрим строение обычного современного оптического микроскопа, который является наиболее популярным как среди любителей, так и профессионалов, так как с их помощью можно решить множество простых исследовательских задач.

Итак, прежде всего в микроскопе можно выделить оптическую и механическую части. К оптической части относится:

  • Окуляр – это та часть микроскопа, которая прямо связана с глазами наблюдателя. В самых первых микроскопах он состоял из одной линзы, конструкция окуляра в современных микроскопах, разумеется, несколько сложнее.
  • Объектив – практически самая важная часть микроскопа, так как именно объектив обеспечивает основное увеличение.
  • Осветитель – отвечает за поток света на исследуемый объект.
  • Диафрагма – регулирует силу светового потока, поступающего на исследуемый объект.

Механическая часть микроскопа состоит из таких важных деталей как:

  • Тубус, он представляет собой трубку, в которой заключается окуляр. Тубус должен быть прочным и не деформироваться, так как иначе пострадают оптические свойства микроскопа.
  • Основание, оно обеспечивает устойчивость микроскопа во время работы. Именно на него крепится тубус, держатель конденсатора, ручки фокусировки и другие детали микроскопа.
  • Револьверная головка – применяется для быстрой смены объективов, в дешевых моделях микроскопов отсутствует.
  • Предметный столик – это то место, на котором размещается исследованный объект или объекты.

А тут на картинке изображено более подробное строение микроскопа.

Правила работы с микроскопом

  • Работать с микроскопом необходимо сидя;
  • Перед работой микроскоп необходимо проверить и протереть от пыли мягкой салфеткой;
  • Установить микроскоп перед собой немного слева;
  • Начинать работу стоит с малого увеличения;
  • Установить освещение в поле зрения микроскопа, используя электроосветитель или зеркало. Глядя одним глазом в окуляр и пользуясь зеркалом с вогнутой стороной, направить свет от окна в объектив, а затем максимально и равномерно осветить поле зрения. Если микроскоп снабжен осветителем, то подсоединить микроскоп к источнику питания, включить лампу и установить необходимую яркость горения;
  • Положить микропрепарат на предметный столик так, чтобы изучаемый объект находился под объективом. Глядя сбоку, опускать объектив при помощи макровинта до тех пор, пока расстояние между нижней линзой объектива и микропрепаратом не станет 4-5 мм;
  • Передвигая препарат рукой, найти нужное место, расположить его в центре поля зрения микроскопа;
  • Для изучения объекта при большом увеличении, сначала нужно поставить выбранный участок в центр поля зрения микроскопа при малом увеличении. Затем поменять объектив на 40 х, поворачивая револьвер, так чтобы он занял рабочее положение. При помощи микрометренного винта добиться хорошего изображения объекта. На коробке микрометренного механизма имеются две черточки, а на микрометренном винте – точка, которая должна все время находиться между черточками. Если она выходит за их пределы, ее необходимо возвратить в нормальное положение. При несоблюдении этого правила, микрометренный винт может перестать действовать;
  • По завершении работы с большим увеличением, установить малое увеличение, поднять объектив, снять с рабочего столика препарат, протереть чистой салфеткой все части микроскопа, накрыть его полиэтиленовым пакетом и поставить в шкаф.


error: Контент защищен !!