Гормоны и их. Гормоны, их свойства и роль в организме

4. ГОРМОНЫ, НОМЕНКЛАТУРА, КЛАССИФИКАЦИЯ

Гормоны - биологические активные вещества, небольшие количества которых вызывают огромную по диапазону и глубине ответную реакцию организма. Гормоны вырабатываются эндокринными железами и предназначены для управления функциями организма, их регуляции и координации.

Химическая природа практически всех гормонов известна. В связи с тем, что химические формулы, отражающие структуру гормонов, громоздкие, используют их тривиальные названия. Современная классификация гормонов основана на их химической природе. Различают три группы истинных гормонов: пептидные и белковые гормоны; гормоны – производные аминокислот; гормоны стероидной природы. Эйкозаноиды – гормоноподобные вещества, оказывающие местное действие.

К пептидным и белковым гормонам, включающим в себя до 250 и более аминокислотных остатков, относятся гормоны гипоталамуса и гипофиза, а также гормоны поджелудочной железы. К гормонам – производным аминокислот в основном относятся гормон тирозин, а также адреналин и норадреналин. Гормоны стероидной природы представлены гормонами коркового вещества надпочечников (кортикостероиды), половыми гормонами (эстрогены и андрогены), а также гормональной формой витамина D. К эйкозаноидам относятся производные арахидоновой кислоты: простагландины, тромбоксаны и лейкотриены.

У человека есть две регуляторных системы, с помощью которых организм приспосабливается к постоянным внутренним и внешним изменениям. Одна из них – нервная система, которая быстро, в виде импульсов, передает сигналы через сеть нервов и нервных клеток; другая – эндокринная, осуществляющая химическую регуляцию с помощью гормонов, которые переносятся кровью и оказывают эффект на отдалённые от места их выделения ткани и органы. Эндокринная система взаимодействует с нервной системой. Это взаимодействие осуществляется через некоторые гормоны, функционирующие в качестве медиаторов (посредников) между нервной системой и органами, отвечающими на их воздействие. В этом случае говорят о нейроэндокринной регуляции. В нормальном состоянии существует баланс между активностью эндокринных желёз, состоянием нервной системы и ответом тканей-мишеней. Нарушение в каждом из этих звеньев приводит к отклонениям от нормы. Избыточная (гиперфункция эндокринной железы) или недостаточная (гипофункция эндокринной железы) продукция гормонов приводит к различным заболеваниям, сопровождающимися глубокими биохимическими изменениями в организме.

Физиологическое действие гормонов направлено на: обеспечение гуморальной, т.е. осуществляемой через кровь, регуляции биологических процессов; поддержание целостности и постоянства внутренней среды, гармоничного взаимодействия между клеточными компонентами тела; регуляцию процессов роста, созревания и репродукции.

Гормоны регулируют активность всех клеток организма. Они влияют на остроту мышления и физическую подвижность, телосложение и рост, определяют рост волос, тональность голоса, половое влечение и поведение. Благодаря эндокринной системе человек может приспосабливаться к сильным температурным колебаниям, излишку или недостатку пищи, к физическим и эмоциональным стрессам. Гормоны регулируют половую и репродуктивную функции и психоэмоциональное состояние организма.

Эндокринные железы представлены в организме человека гипофизом, щитовидной и паращитовидной железами, надпочечниками, поджелудочной железой, половыми железами (семенники и яичники), плацентой и гормон - продуцирующими участками желудочно-кишечного тракта. В организме синтезируются и некоторые соединения гормоноподобного действия. Например, гипоталамус секретирует ряд веществ (либерины) необходимых для высвобождения гормонов гипофиза. Эти рилизинг-факторы, или либерины, поступают в гипофиз через систему кровеносных сосудов.

У гормона может быть несколько органов-мишеней, и вызываемые ими изменения могут сказываться на целом ряде функций организма. Гормоны иногда действуют совместно; так эффект одного гормона, может зависеть от присутствия какого-то другого или других гормонов. Гормон роста, например, неэффективен в отсутствие тиреоидного гормона.

Действие гормонов осуществляется по двум основным механизмам: не проникающие в клетку гормоны (водорастворимые) действуют через рецепторы на клеточной мембране, а легко проходящие через мембрану гормоны (жирорастворимые) – через рецепторы в цитоплазме клетки. Во всех случая только наличие специфического белка-рецептора определяет чувствительность клетки к данному гормону, т.е. делает её «мишенью».

Первый механизм действия гормонов заключается в том, что гормон связывается со своими специфическими рецепторами на поверхности клетки; связывание запускает серию реакций, в результате которых образуется так называемые посредники, оказывающие прямое влияние на клеточный метаболизм. Такими посредниками служат обычно цАМФ и / или ионы кальция, которые высвобождаются из внутриклеточных структур или поступают в клетку извне. И цАМФ, и ионы кальция используются для передачи внешнего сигнала внутрь клеток. Некоторые мембранные рецепторы, в частности рецепторы инсулина, действуют более коротким путём: они пронизывают мембрану насквозь, и когда часть их молекулы связывает гормон на поверхности клетки, другая часть начинает функционировать как активный фермент на стороне, обращённой внутрь клетки; это и обеспечивает проявление гормонального эффекта.

Второй механизм действия – через цитоплазматические рецепторы – свойствен стероидным гормонам (гормонам коры надпочечников и половым), а также гормонам щитовидной железы (Т 3 и Т 4). Проникнув в клетку, содержащую соответствующий рецептор, гормон образует с ним гормон - рецепторный комплекс. Этот комплекс подвергается активации (с помощью АТФ), после чего проникает в клеточное ядро, где гормон оказывает прямое влияние на экспрессию определённых генов, стимулируя синтез специфических РНК и белков. Именно эти новообразованные белки, обычно короткоживущие, ответственны за те изменения, которые составляют физиологический эффект гормона.

Регуляция гормональной секреции осуществляется несколькими связанными между собой механизмами. Например, продукция кортизола регулируется по механизму обратной связи, которая действует на уровне гипоталамуса. Когда в крови снижается концентрация кортизола, гипоталамус секретирует кортиколиберин – фактор, стимулирующий секрецию гипофизом кортикотропина (АКТГ). Повышение уровня АКТГ в крови, в свою очередь, стимулирует секрецию кортизола в надпочечниках, и в результате содержание кортизола в крови возрастает. Повышенный уровень кортизола подавляет затем по механизму обратной связи выделение кортиколиберина, и содержание кортизола в крови снова снижается. Секреция кортизола регулируется не только механизмом обратной связи. Так, например, стресс вызывает освобождение кортиколиберина, а соответственно и всю серию реакций, повышающих секрецию кортизола. Кроме того, секреция кортизола подчиняется суточному ритму; она очень высокая при пробуждении, но постепенно снижается до минимума во время сна. К механизмам контроля относится также скорость метаболизма гормона и утраты им активности. Аналогичные системы регуляции действуют и в отношении других гормонов.

Основные гормоны человека

Гормоны гипофиза.

Гормоны передней доли гипофиза. Железистая ткань передней доли гипофиза продуцирует: гормон роста (ГР), или соматотропин, который воздействует на все ткани организма, повышая их анаболическую активность (т.е. процессы синтеза компонентов тканей организма и увеличения энергетических запасов); меланоцит-стимулирующий гормон (МСГ), усиливающий выработку пигмента некоторыми клетками кожи (меланоцитами и меланофорами); тиреотропный гормон (ТТГ), стимулирующий синтез тиреоидных гормонов в щитовидной железе; фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ), относящийся к гонадотропинам: их действие направлено на половые железы; пролактин (ПРЛ), - гормон, стимулирующий формирование молочных желёз и лактацию.

Гормоны задней доли гипофиза - вазопрессин и окситоцин. Оба гормона продуцируются в гипоталамусе, но сохраняются и высвобождаются в задней доле гипофиза, лежащей книзу от гипоталамуса. Вазопрессин поддерживает тонус кровеносных сосудов и является антидиуретическим гормоном, влияющим на водный обмен. Окситоцин вызывает сокращение матки и «запускает» лактацию после родов.

Тиреоидные и паратиреоидные гормоны. Основные гормоны щитовидной железы: тироксин (Т 4) и трийодтиронин (Т 3). Попадая в кровоток, они связываются со специфическими белками плазмы и не так быстро высвобождаются, а потому действуют медленно и продолжительно. Тиреоидные гормоны стимулируют белковый обмен и распад питательных веществ с высвобождением тепла и энергии, что проявляется повышенным потреблением О 2 . Эти гормоны влияют также на метаболизм углеводов и регулируют скорость мобилизации свободных жирных кислот из жировой ткани. Повышенная продукция тиреоидных гормонов вызывает тиреотоксикоз, а их недостаточность – гипотиреоз (миксидема). Щитовидная железа выделяет также сильнодействующий тиреоидный стимулятор - -глобулин, вызывающий гипертиреоидное состояние, и кальцитонин.

Гормон паращитовидных желёз – паратгормон. Он поддерживает постоянство кальция в крови: при его снижении паратгормон высвобождается и активирует переход кальция из костей в кровь до тех пор, пока содержание кальция не вернётся к норме. Повышенная продукция паратгормона вызывает заболевание костей, камни в почках, обызвествление почечных канальцев. Недостаточность сопровождается значительным снижением уровня кальция в крови и проявляется повышенной нервно-мышечной возбудимостью, спазмами и судорогами.

Гормоны надпочечников. Надпочечники состоят из внешнего слоя – коры, и внутренней части – мозгового слоя. Адреналин и норадреналин – два основных гормона, секретируемых мозговым слоем надпочечников. Адреналин считается метаболическим гормоном, или гормоном выживания, так как обеспечивает реакцию организма на внезапную опасность. При её возникновении адреналин выбрасывается в кровь и мобилизует запасы углеводов для быстрого высвобождения энергии, увеличивает мышечную силу, вызывает расширение зрачков и сужение периферических кровеносных сосудов. Адреналин стимулирует секрецию АКТГ, АКТГ, в свою очередь стимулирует выброс корой надпочечников кортизола, в результате чего увеличивается превращение белков в глюкозу, необходимую для восполнения в печени и мышцах запасов гликогена, используемых при реакции тревоги.

Норадреналин – вазоконстриктор, он сужает кровеносные сосуды и повышает артериальное давление.

Кора надпочечников секретирует три основных группы гормонов: минералокортикоиды, глюкокортикоиды и половые стероиды (андрогены и эстрогены). Минералокортикоиды – это альдостерон и дезоксикортикостерон. Их действие связано в основном с поддержанием солевого баланса. Глюкокортикоиды влияют на обмен углеводов, белков, жиров, а также на иммунологические защитные механизмы. Наиболее важные из них - кортизол и кортикостерон. Половые стероиды, играющие вспомогательную роль, подобны тем, что синтезируются в гонадах; это дегидроэпиандростерон сульфат, ∆ 4 -андростендион, дигидроэпиандростерон и некоторые эстрогены.

Избыток кортизола приводит к нарушению метаболизма, вызывая гиперглюконеогенез, т.е. чрезмерное превращение белков в углеводы. Это состояние известно как синдром Кушинга, характеризуется потерей мышечной массы, снижением поступления глюкозы в ткани, а это проявляется аномальным увеличение концентрации сахара в крови при его поступлении с пищей, а также деминерализацией костей. Гипофункция надпочечников встречается в острой и хронической форме. Её причиной бывает тяжелая, быстро развивающая бактериальная инфекция: она может повредить железистую ткань надпочечника и привести к глубокому шоку. При хроническом патологическом процессе вследствие частичного разрушения надпочечника развивается Аддисонова болезнь, характеризующаяся сильной слабостью, похудением, низким артериальным давлением, желудочно-кишечными расстройствами, повышенной потребностью в соли и пигментацией кожи.

Тестикулярные гормоны. Семенники (яички) являются железами смешанной секреции, т.к. вырабатывают сперму (внешний секрет) и секретируют половые гормоны – андрогены (внутренний секрет). Эндокринную функцию тестикул осуществляют клетки Лейдига, которые секретируют ∆ 4 -андростендион и тестостерон, основной мужской половой гормон. Клетки Лейдига также вырабатывают небольшое количество эстрогена (эстрадиола). Семенники находятся под контролем гонадотропинов. Гонадотропин ФСГ стимулирует образование спермы (сперматогенез). Под влиянием ЛГ клетки Лейдига выделяют тестостерон. Сперматогенез происходит только при достаточном количестве андрогенов. Тестостерон и другие андрогены ответственны за развитие вторичных половых признаков у мужчин. Нарушение эндокринной функции семенников в большинстве случаев сводится к недостаточной секреции андрогенов. Гипогонадизм – это снижение функции семенников, включая секрецию тестостерона и сперматогенез. Причины гипогонадизма – заболевание семенников или функциональная недостаточность гипофиза. Повышенная секреция андрогенов встречается при опухолях клеток Лейдига, что приводит к чрезмерному развитию мужских половых признаков, особенно у подростков. Иногда опухоли семенников вырабатывают эстрогены и вызывают феминизацию.

Гормоны яичников. Яичники имеют две функции: развитие яйцеклеток и секреция гормонов. Гормоны яичников – эстрогены, прогестерон и ∆ 4 -андростендион. Эстрогены определяют развитие женских вторичных половых признаков. Эстроген яичников, эстрадиол, вырабатывается в клетках растущего фолликула. В результате действия как ФСГ, так и ЛГ, фолликул созревает и разрывается, высвобождая яйцеклетку. Разорванный фолликул превращается затем в жёлтое тело, которое секретирует эстрадиол и прогестерон. Эти гормоны готовят эндометрий к имплантации оплодотворенной яйцеклетки. Если оплодотворения не произошло, желтое тело подвергается регрессии, секреция эстрадиола и прогестерона прекращается, эндометрий отслаивается, вызывая менструацию.

Гормоны поджелудочной железы. Поджелудочная железа является железой смешанной секреции. Экзокринный компонент – это пищеварительные ферменты, которые в форме неактивных предшественников поступают в двенадцатиперстную кишку через ductus pancreaticus в виде пищеварительного сока. Внутреннюю секрецию обеспечивают островки Лангерганса: α-клетки секретируют гормон глюкагон, β-клетки – инсулин. Основное действие инсулина заключается в понижении уровня глюкозы в крови, осуществляемое тремя способами: торможением образования глюкозы в печени, торможением в печени и мышцах распада гликогена, стимуляцией использования глюкозы тканями. Недостаточность секреции инсулина или повышенная его нейтрализация аутоантителами приводят к высокому уровню глюкозы в крови и развитию сахарного диабета. Действие глюкагона направлено на увеличение уровня глюкозы в крови за счёт стимулирования её продукции в печени.

Гормоны плаценты. Плацента – пористая мембрана, которая соединяет эмбрион со стенкой матки. Она секретирует хорионический гонадотропин (ХГ) и плацентарный лактоген (ПЛ) человека. Подобно яичникам, плацента продуцирует прогестерон и ряд эстрогенов (эстрон, эстрадиол, 16 –гидроксидегидроэпиандростерон и эстриол). ХГ сохраняет жёлтое тело, которое вырабатывает эстрадиол и прогестерон, поддерживающие целостность эндометрия матки. ПЛ – мощный метаболический гормон. Воздействуя на углеводный и жировой обмен, он способствует сохранению глюкозы и азотсодержащих соединений в организме матери и обеспечивает снабжение плода достаточным количеством питательных веществ. ПЛ также способствует мобилизации свободных жирных кислот – источника энергии материнского организма.

Желудочно-кишечные гормоны. Гормоны желудочно-кишечного тракта – гастрин, холецистокинин, секретин и панкреозимин. Это полипептиды, секретируемые слизистой оболочкой желудочно-кишечного тракта в ответ на специфическую стимуляцию. Гастрин стимулирует секрецию соляной кислоты, холецистокинин контролирует опорожнение желчного пузыря, а секретин и панкреозимин регулируют выделение сока поджелудочной железы.

Нейрогормоны. Это группа химических соединений, секретируемых нервными клетками (нейронами), и проявляющих гормоноподобное действие. Они стимулируют или подавляют активность других клеток и включают в себя рилизинг-факторы и нейромедиаторы. Их функции заключаются в передаче нервных импульсов через синаптическую щель, отделяющую одну нервную клетку от другой. К нейромедиаторм относятся дофамин, адреналин, норадреналин, серотонин, гистамин, ацетилхолин и -аминомасляная кислота, а также нейромедиаторы (эндорфины), обладающие морфиноподобным действием, обезболивающим действием. Эндорфины способны связываться со специальными рецепторами в структурах головного мозга. В результате такого связывания в спинной мозг посылаются импульсы, которые блокируют проведение поступающих болевых сигналов. Болеутоляющее действие морфина и других опиатов обусловлено их сходством с эндорфинами, обеспечивающими их связывание с теми же блокирующими боль рецепторами.

Гормоны часто применяются как специфические лекарственные средства. Например, адреналин эффективен при приступах бронхиальной астмы, некоторые кожные болезни лечат глюкокортикоидами, педиатры прибегают к анаболическим стероидам, а урологи - к эстрагенам.

ГОРМОНЫ
органические соединения, вырабатываемые определенными клетками и предназначенные для управления функциями организма, их регуляции и координации. У высших животных есть две регуляторных системы, с помощью которых организм приспосабливается к постоянным внутренним и внешним изменениям. Одна из них - нервная система, быстро передающая сигналы (в виде импульсов) через сеть нервов и нервных клеток; другая - эндокринная, осуществляющая химическую регуляцию с помощью гормонов, которые переносятся кровью и оказывают эффект на отдаленные от места их выделения ткани и органы. Химическая система связи взаимодействует с нервной системой; так, некоторые гормоны функционируют в качестве медиаторов (посредников) между нервной системой и органами, отвечающими на воздействие. Таким образом, различие между нервной и химической координацией не является абсолютным. Гормоны есть у всех млекопитающих, включая человека; они обнаружены и у других живых организмов. Хорошо описаны гормоны растений и гормоны линьки насекомых
(см. также ГОРМОНЫ РАСТЕНИЙ). Физиологическое действие гормонов направлено на:
1) обеспечение гуморальной, т.е. осуществляемой через кровь, регуляции биологических процессов; 2) поддержание целостности и постоянства внутренней среды, гармоничного взаимодействия между клеточными компонентами тела; 3) регуляцию процессов роста, созревания и репродукции. Гормоны регулируют активность всех клеток организма. Они влияют на остроту мышления и физическую подвижность, телосложение и рост, определяют рост волос, тональность голоса, половое влечение и поведение. Благодаря эндокринной системе человек может приспосабливаться к сильным температурным колебаниям, излишку или недостатку пищи, к физическим и эмоциональным стрессам. Изучение физиологического действия эндокринных желез позволило раскрыть секреты половой функции и чудо рождения детей, а также ответить на вопрос, почему одни люди высокого роста, а другие низкого, одни полные, другие худые, одни медлительные, другие проворные, одни сильные, другие слабые. В нормальном состоянии существует гармоничный баланс между активностью эндокринных желез, состоянием нервной системы и ответом тканей-мишеней (тканей, на которые направлено воздействие). Любое нарушение в каждом из этих звеньев быстро приводит к отклонениям от нормы. Избыточная или недостаточная продукция гормонов служит причиной различных заболеваний, сопровождающихся глубокими химическими изменениями в организме. Изучением роли гормонов в жизнедеятельности организма и нормальной и патологической физиологией желез внутренней секреции занимается эндокринология. Как медицинская дисциплина она появилась только в 20 в., однако эндокринологические наблюдения известны со времен античности. Гиппократ полагал, что здоровье человека и его темперамент зависят от особых гуморальных веществ. Аристотель обратил внимание на то, что кастрированный теленок, вырастая, отличается в половом поведении от кастрированного быка тем, что даже не пытается взбираться на корову. Кроме того, на протяжении веков кастрация практиковалась как для приручения и одомашнивания животных, так и для превращения человека в покорного раба. Что такое гормоны? Согласно классическому определению, гормоны - продукты секреции эндокринных желез, выделяющиеся прямо в кровоток и обладающие высокой физиологической активностью. Главные эндокринные железы млекопитающих - гипофиз, щитовидная и паращитовидные железы, кора надпочечников, мозговое вещество надпочечников, островковая ткань поджелудочной железы, половые железы (семенники и яичники), плацента и гормон-продуцирующие участки желудочно-кишечного тракта. В организме синтезируются и некоторые соединения гормоноподобного действия. Например, исследования гипоталамуса показали, что ряд секретируемых им веществ необходим для высвобождения гормонов гипофиза. Эти "рилизинг-факторы", или либерины, были выделены из различных участков гипоталамуса. Они поступают в гипофиз через систему кровеносных сосудов, соединяющих обе структуры. Поскольку гипоталамус по своему строению не является железой, а рилизинг-факторы поступают, по-видимому, только в очень близко расположенный гипофиз, эти выделяемые гипоталамусом вещества могут считаться гормонами лишь при расширительном понимании данного термина. В определении того, какие вещества следует считать гормонами и какие структуры эндокринными железами, есть и другие проблемы. Убедительно показано, что такие органы, как печень, могут экстрагировать из циркулирующей крови физиологически малоактивные или вовсе неактивные гормональные вещества и превращать их в сильнодействующие гормоны. Например, дегидроэпиандростерон сульфат, малоактивное вещество, продуцируемое надпочечниками, преобразуется в печени в тестостерон - высокоактивный мужской половой гормон, в большом количестве секретируемый семенниками. Доказывает ли это, однако, что печень - эндокринный орган? Другие вопросы еще более трудны. Почки секретируют в кровоток фермент ренин, который через активацию ангиотензиновой системы (эта система вызывает расширение кровеносных сосудов) стимулирует продукцию гормона надпочечников - альдостерона. Регуляция выделения альдостерона этой системой весьма схожа с тем, как гипоталамус стимулирует высвобождение гипофизарного гормона АКТГ (адренокортикотропного гормона, или кортикотропина), регулирующего функцию надпочечников. Почки секретируют также эритропоэтин - гормональное вещество, стимулирующее продукцию эритроцитов. Можно ли отнести почку к эндокринным органам? Все эти примеры доказывают, что классическое определение гормонов и эндокринных желез не является достаточно исчерпывающим.
Транспорт гормонов. Гормоны, попав в кровоток, должны поступать к соответствующим органам-мишеням. Транспорт высокомолекулярных (белковых) гормонов изучен мало из-за отсутствия точных данных о молекулярной массе и химической структуре многих из них. Гормоны со сравнительно небольшой молекулярной массой, такие, как тиреоидные и стероидные, быстро связываются с белками плазмы, так что содержание в крови гормонов в связанной форме выше, чем в свободной; эти две формы находятся в динамическом равновесии. Именно свободные гормоны проявляют биологическую активность, и в ряде случаев было четко показано, что они экстрагируются из крови органами-мишенями. Значение белкового связывания гормонов в крови не совсем ясно. Предполагают, что такое связывание облегчает транспорт гормона либо защищает гормон от потери активности.
Действие гормонов. Отдельные гормоны и их основные эффекты представлены ниже в разделе "Основные гормоны человека". В целом, гормоны действуют на определенные органы-мишени и вызывают в них значительные физиологические изменения. У гормона может быть несколько органов-мишеней, и вызываемые им физиологические изменения могут сказываться на целом ряде функций организма. Например, поддержание нормального уровня глюкозы в крови - а оно в значительной степени контролируется гормонами - важно для жизнедеятельности всего организма. Гормоны иногда действуют совместно; так, эффект одного гормона может зависеть от присутствия какого-то другого или других гормонов. Гормон роста, например, неэффективен в отсутствие тиреоидного гормона. Действие гормонов на клеточном уровне осуществляется по двум основным механизмам: не проникающие в клетку гормоны (обычно водорастворимые) действуют через рецепторы на клеточной мембране, а легко проходящие через мембрану гормоны (жирорастворимые) - через рецепторы в цитоплазме клетки. Во всех случаях только наличие специфического белка-рецептора определяет чувствительность клетки к данному гормону, т.е. делает ее "мишенью". Первый механизм действия, подробно изученный на примере адреналина, заключается в том, что гормон связывается со своими специфическими рецепторами на поверхности клетки; связывание запускает серию реакций, в результате которых образуются т.н. вторые посредники, оказывающие прямое влияние на клеточный метаболизм. Такими посредниками служат обычно циклический аденозиномонофосфат (цАМФ) и/или ионы кальция; последние высвобождаются из внутриклеточных структур или поступают в клетку извне. И цАМФ, и ионы кальция используются для передачи внешнего сигнала внутрь клеток у самых разнообразных организмов на всех ступенях эволюционной лестницы. Однако некоторые мембранные рецепторы, в частности рецепторы инсулина, действуют более коротким путем: они пронизывают мембрану насквозь, и когда часть их молекулы связывает гормон на поверхности клетки, другая часть начинает функционировать как активный фермент на стороне, обращенной внутрь клетки; это и обеспечивает проявление гормонального эффекта. Второй механизм действия - через цитоплазматические рецепторы - свойствен стероидным гормонам (гормонам коры надпочечников и половым), а также гормонам щитовидной железы (T3 и T4). Проникнув в клетку, содержащую соответствующий рецептор, гормон образует с ним гормон-рецепторный комплекс. Этот комплекс подвергается активации (с помощью АТФ), после чего проникает в клеточное ядро, где гормон оказывает прямое влияние на экспрессию определенных генов, стимулируя синтез специфических РНК и белков. Именно эти новообразованные белки, обычно короткоживущие, ответственны за те изменения, которые составляют физиологический эффект гормона. Регуляция гормональной секреции осуществляется несколькими связанными между собой механизмами. Их можно проиллюстрировать на примере кортизола, основного глюкокортикоидного гормона надпочечников. Его продукция регулируется по механизму обратной связи, который действует на уровне гипоталамуса. Когда в крови снижается уровень кортизола, гипоталамус секретирует кортиколиберин - фактор, стимулирующий секрецию гипофизом кортикотропина (АКТГ). Повышение уровня АКТГ, в свою очередь, стимулирует секрецию кортизола в надпочечниках, и в результате содержание кортизола в крови возрастает. Повышенный уровень кортизола подавляет затем по механизму обратной связи выделение кортиколиберина - и содержание кортизола в крови снова снижается. Секреция кортизола регулируется не только механизмом обратной связи. Так, например, стресс вызывает освобождение кортиколиберина, а соответственно и всю серию реакций, повышающих секрецию кортизола. Кроме того, секреция кортизола подчиняется суточному ритму; она очень высока при пробуждении, но постепенно снижается до минимального уровня во время сна. К механизмам контроля относится также скорость метаболизма гормона и утраты им активности. Аналогичные системы регуляции действуют и в отношении других гормонов.
ОСНОВНЫЕ ГОРМОНЫ ЧЕЛОВЕКА
Гормоны гипофиза подробно описаны в статье ГИПОФИЗ. Здесь мы лишь перечислим основные продукты гипофизарной секреции.
Гормоны передней доли гипофиза. Железистая ткань передней доли продуцирует:

Гормон роста (ГР), или соматотропин, который воздействует на все ткани организма, повышая их анаболическую активность (т.е. процессы синтеза компонентов тканей организма и увеличения энергетических запасов). - меланоцит-стимулирующий гормон (МСГ), усиливающий выработку пигмента некоторыми клетками кожи (меланоцитами и меланофорами); - тиреотропный гормон (ТТГ), стимулирующий синтез тиреоидных гормонов в щитовидной железе; - фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ), относящиеся к гонадотропинам: их действие направлено на половые железы
(см. также РЕПРОДУКЦИЯ ЧЕЛОВЕКА). - пролактин, обозначаемый иногда как ПРЛ, - гормон, стимулирующий формирование молочных желез и лактацию.


Гормоны задней доли гипофиза - вазопрессин и окситоцин. Оба гормона продуцируются в гипоталамусе, но сохраняются и высвобождаются в задней доле гипофиза, лежащей книзу от гипоталамуса. Вазопрессин поддерживает тонус кровеносных сосудов и является антидиуретическим гормоном, влияющим на водный обмен. Окситоцин вызывает сокращение матки и обладает свойством "отпускать" молоко после родов.
Тиреоидные и паратиреоидные гормоны. Щитовидная железа расположена на шее и состоит из двух долей, соединенных узким перешейком
(см. ЩИТОВИДНАЯ ЖЕЛЕЗА).
Четыре паращитовидных железы обычно расположены парами - на задней и боковой поверхности каждой доли щитовидной железы, хотя иногда одна или две могут быть несколько смещены. Главными гормонами, секретируемыми нормальной щитовидной железой, являются тироксин (Т4) и трийодтиронин (Т3). Попадая в кровоток, они связываются - прочно, но обратимо - со специфическими белками плазмы. Т4 связывается сильнее, чем Т3, и не так быстро высвобождается, а потому он действует медленнее, но продолжительнее. Тиреоидные гормоны стимулируют белковый синтез и распад питательных веществ с высвобождением тепла и энергии, что проявляется повышенным потреблением кислорода. Эти гормоны влияют также на метаболизм углеводов и, наряду с другими гормонами, регулируют скорость мобилизации свободных жирных кислот из жировой ткани. Короче говоря, тиреоидные гормоны оказывают стимулирующее действие на обменные процессы. Повышенная продукция тиреоидных гормонов вызывает тиреотоксикоз, а при их недостаточности возникает гипотиреоз, или микседема. Другим соединением, найденным в щитовидной железе, является длительно действующий тиреоидный стимулятор. Он представляет собой гамма-глобулин и, вероятно, вызывает гипертиреоидное состояние. Гормон паращитовидных желез называют паратиреоидным, или паратгормоном; он поддерживает постоянство уровня кальция в крови: при его снижении паратгормон высвобождается и активирует переход кальция из костей в кровь до тех пор, пока содержание кальция в крови не вернется к норме. Другой гормон - кальцитонин - оказывает противоположное действие и выделяется при повышенном уровне кальция в крови. Раньше полагали, что кальцитонин секретируется паращитовидными железами, теперь же показано, что он вырабатывается в щитовидной железе. Повышенная продукция паратгормона вызывает заболевание костей, камни в почках, обызвествление почечных канальцев, причем возможно сочетание этих нарушений. Недостаточность паратгормона сопровождается значительным снижением уровня кальция в крови и проявляется повышенной нервно-мышечной возбудимостью, спазмами и судорогами.
Гормоны надпочечников. Надпочечники - небольшие образования, расположенные над каждой почкой. Они состоят из внешнего слоя, называемого корой, и внутренней части - мозгового слоя. Обе части имеют свои собственные функции, а у некоторых низших животных это совершенно раздельные структуры. Каждая из двух частей надпочечников играет важную роль как в нормальном состоянии, так и при заболеваниях. Например, один из гормонов мозгового слоя - адреналин - необходим для выживания, так как обеспечивает реакцию на внезапную опасность. При ее возникновении адреналин выбрасывается в кровь и мобилизует запасы углеводов для быстрого высвобождения энергии, увеличивает мышечную силу, вызывает расширение зрачков и сужение периферических кровеносных сосудов. Таким образом, направляются резервные силы для "бегства или борьбы", а кроме того снижаются кровопотери благодаря сужению сосудов и быстрому свертыванию крови. Адреналин стимулирует также секрецию АКТГ (т.е. гипоталамо-гипофизарную ось). АКТГ, в свою очередь, стимулирует выброс корой надпочечников кортизола, в результате чего увеличивается превращение белков в глюкозу, необходимую для восполнения в печени и мышцах запасов гликогена, использованных при реакции тревоги. Кора надпочечников секретирует три основные группы гормонов: минералокортикоиды, глюкокортикоиды и половые стероиды (андрогены и эстрогены). Минералокортикоиды - это альдостерон и дезоксикортикостерон. Их действие связано преимущественно с поддержанием солевого баланса. Глюкокортикоиды влияют на обмен углеводов, белков, жиров, а также на иммунологические защитные механизмы. Наиболее важные из глюкокортикоидов - кортизол и кортикостерон. Половые стероиды, играющие вспомогательную роль, подобны тем, что синтезируются в гонадах; это дегидроэпиандростерон сульфат, D4-андростендион, дегидроэпиандростерон и некоторые эстрогены. Избыток кортизола приводит к серьезному нарушению метаболизма, вызывая гиперглюконеогенез, т.е. чрезмерное превращение белков в углеводы. Это состояние, известное как синдром Кушинга, характеризуется потерей мышечной массы, сниженной углеводной толерантностью, т.е. сниженным поступление глюкозы из крови в ткани (что проявляется аномальным увеличением концентрации сахара в крови при его поступлении с пищей), а также деминерализацией костей. Избыточная секреция андрогенов опухолями надпочечника приводит к маскулинизации. Опухоли надпочечника могут вырабатывать также эстрогены, особенно у мужчин, приводя к феминизации. Гипофункция (сниженная активность) надпочечников встречается в острой или хронической форме. Причиной гипофункции бывает тяжелая, быстро развивающаяся бактериальная инфекция: она может повредить надпочечник и привести к глубокому шоку. В хронической форме болезнь развивается вследствие частичного разрушения надпочечника (например, растущей опухолью или туберкулезным процессом) либо продукции аутоантител. Это состояние, известное как аддисонова болезнь, характеризуется сильной слабостью, похуданием, низким кровяным давлением, желудочно-кишечными расстройствами, повышенной потребностью в соли и пигментацией кожи. Аддисонова болезнь, описанная в 1855 Т.Аддисоном, стала первым распознанным эндокринным заболеванием. Адреналин и норадреналин - два основных гормона, секретируемых мозговым слоем надпочечников. Адреналин считается метаболическим гормоном из-за его влияния на углеводные запасы и мобилизацию жиров. Норадреналин - вазоконстриктор, т.е. он сужает кровеносные сосуды и повышает кровяное давление. Мозговой слой надпочечников тесно связан с нервной системой; так, норадреналин высвобождается симпатическими нервами и действует как нейрогормон. Избыточная секреция гормонов мозгового слоя надпочечников (медуллярных гормонов) возникает при некоторых опухолях. Симптомы зависят от того, какой из двух гормонов, адреналин или норадреналин, образуется в большем количестве, но чаще всего наблюдаются внезапные приступы приливов, потливости, тревоги, сердцебиения, а также головная боль и артериальная гипертония.
Тестикулярные гормоны. Семенники (яички) имеют две части, являясь железами и внешней, и внутренней секреции. Как железы внешней секреции они вырабатывают сперму, а эндокринную функцию осуществляют содержащиеся в них клетки Лейдига, которые секретируют мужские половые гормоны (андрогены), в частности D4-андростендион и тестостерон, основной мужской гормон. Клетки Лейдига вырабатывают также небольшое количество эстрогена (эстрадиола). Семенники находятся под контролем гонадотропинов (см. выше раздел ГОРМОНЫ ГИПОФИЗА). Гонадотропин ФСГ стимулирует образование спермы (сперматогенез). Под влиянием другого гонадотропина, ЛГ, клетки Лейдига выделяют тестостерон. Сперматогенез происходит только при достаточном количестве андрогенов. Андрогены, в частности тестостерон, ответственны за развитие вторичных половых признаков у мужчин. Нарушение эндокринной функции семенников сводится в большинстве случаев к недостаточной секреции андрогенов. Например, гипогонадизм - это снижение функции семенников, включая секрецию тестостерона, сперматогенез или и то, и другое. Причиной гипогонадизма может быть заболевание семенников, либо - опосредованно - функциональная недостаточность гипофиза. Повышенная секреция андрогенов встречается при опухолях клеток Лейдига и приводит к чрезмерному развитию мужских половых признаков, особенно у подростков. Иногда опухоли семенников вырабатывают эстрогены, вызывая феминизацию. В случае редкой опухоли семенников - хориокарциномы - продуцируется столько хорионических гонадотропинов, что анализ минимального количества мочи или сыворотки дает те же результаты, что и при беременности у женщин. Развитие хориокарциномы может привести к феминизации.
Гормоны яичников. Яичники имеют две функции: развитие яйцеклеток и секреция гормонов
(см. также РЕПРОДУКЦИЯ ЧЕЛОВЕКА).
Гормоны яичников - это эстрогены, прогестерон и D4-андростендион. Эстрогены определяют развитие женских вторичных половых признаков. Эстроген яичников, эстрадиол, вырабатывается в клетках растущего фолликула - мешочка, который окружает развивающуюся яйцеклетку. В результате действия как ФСГ, так и ЛГ, фолликул созревает и разрывается, высвобождая яйцеклетку. Разорванный фолликул превращается затем в т.н. желтое тело, которое секретирует как эстрадиол, так и прогестерон. Эти гормоны, действуя совместно, готовят слизистую матки (эндометрий) к имплантации оплодотворенной яйцеклетки. Если оплодотворения не произошло, желтое тело подвергается регрессии; при этом прекращается секреция эстрадиола и прогестерона, а эндометрий отслаивается, вызывая менструацию. Хотя яичники содержат много незрелых фолликулов, во время каждого менструального цикла созревает обычно только один из них, высвобождающий яйцеклетку. Избыток фолликулов подвергается обратному развитию на протяжении всего репродуктивного периода жизни женщины. Дегенерирующие фолликулы и остатки желтого тела становятся частью стромы - поддерживающей ткани яичника. При определенных обстоятельствах специфические клетки стромы активируются и секретируют предшественник активных андрогенных гормонов - D4-андростендион. Активация стромы возникает, например, при поликистозе яичников - болезни, связанной с нарушением овуляции. В результате такой активации продуцируется избыток андрогенов, что может вызвать гирсутизм (резко выраженную волосатость). Пониженная секреция эстрадиола имеет место при недоразвитии яичников. Функция яичников снижается и в менопаузе, так как запас фолликулов истощается и как следствие падает секреция эстрадиола, что сопровождается целым рядом симптомов, наиболее характерным из которых являются приливы. Избыточная продукция эстрогенов обычно связана с опухолями яичников. Наибольшее число менструальных расстройств вызвано дисбалансом гормонов яичников и нарушением овуляции.
Гормоны плаценты человека.
Плацента - пористая мембрана, которая соединяет эмбрион (плод) со стенкой материнской матки. Она секретирует хорионический гонадотропин и плацентарный лактоген человека. Подобно яичникам плацента продуцирует прогестерон и ряд эстрогенов.
Хорионический гонадотропин (ХГ). Имплантации оплодотворенной яйцеклетки способствуют материнские гормоны - эстрадиол и прогестерон. На седьмой день после оплодотворения человеческий зародыш укрепляется в эндометрии и получает питание от материнских тканей и из кровотока. Отслоение эндометрия, которое вызывает менструацию, не происходит, потому что эмбрион секретирует ХГ, благодаря которому сохраняется желтое тело: вырабатываемые им эстрадиол и прогестерон поддерживают целость эндометрия. После имплантации зародыша начинает развиваться плацента, продолжающая секретировать ХГ, который достигает наибольшей концентрации примерно на втором месяце беременности. Определение концентрации ХГ в крови и моче лежит в основе тестов на беременность.
Плацентарный лактоген человека (ПЛ). В 1962 ПЛ был обнаружен в высокой концентрации в ткани плаценты, в оттекающей от плаценты крови и в сыворотке материнской периферической крови. ПЛ оказался сходным, но не идентичным с гормоном роста человека. Это мощный метаболический гормон. Воздействуя на углеводный и жировой обмен, он способствует сохранению глюкозы и азотсодержащих соединений в организме матери и тем самым обеспечивает снабжение плода достаточным количеством питательных веществ; одновременно он вызывает мобилизацию свободных жирных кислот - источника энергии материнского организма.
Прогестерон. Во время беременности в крови (и моче) женщины постепенно возрастает уровень прегнандиола, метаболита прогестерона. Прогестерон секретируется главным образом плацентой, а основным его предшественником служит холестерин из крови матери. Синтез прогестерона не зависит от предшественников, продуцируемых плодом, судя по тому, что он практически не снижается через несколько недель после смерти зародыша; синтез прогестерона продолжается также в тех случаях, когда у пациенток с брюшной внематочной беременностью произведено удаление плода, но сохранилась плацента.
Эстрогены. Первые сообщения о высоком уровне эстрогенов в моче беременных появились в 1927, и вскоре стало ясно, что такой уровень поддерживается только при наличии живого плода. Позже было выявлено, что при аномалии плода, связанной с нарушением развития надпочечников, содержание эстрогенов в моче матери значительно снижено. Это позволило предположить, что гормоны коры надпочечников плода служат предшественниками эстрогенов. Дальнейшие исследования показали, что дегидроэпиандростерон сульфат, присутствующий в плазме крови плода, является основным предшественником таких эстрогенов, как эстрон и эстрадиол, а 16-гидроксидегидроэпиандростерон, также эмбрионального происхождения, - основной предшественник еще одного продуцируемого плацентой эстрогена, эстриола. Таким образом, нормальное выделение эстрогенов с мочой при беременности определяется двумя условиями: надпочечники плода должны синтезировать предшественники в нужном количестве, а плацента - превращать их в эстрогены.
Гормоны поджелудочной железы.
Поджелудочная железа осуществляет как внутреннюю, так и внешнюю секрецию. Экзокринный (относящийся к внешней секреции) компонент - это пищеварительные ферменты, которые в форме неактивных предшественников поступают в двенадцатиперстную кишку через проток поджелудочной железы. Внутреннюю секрецию обеспечивают островки Лангерганса, представленные клетками нескольких типов: альфа-клетки секретируют гормон глюкагон, бета-клетки - инсулин. Основное действие инсулина заключается в понижении уровня глюкозы в крови, осуществляемое главным образом тремя способами: 1) торможением образования глюкозы в печени; 2) торможением в печени и мышцах распада гликогена (полимера глюкозы, который организм при необходимости может превращать в глюкозу); 3) стимуляцией использования глюкозы тканями. Недостаточная секреция инсулина или повышенная его нейтрализация аутоантителами приводят к высокому уровню глюкозы в крови и развитию сахарного диабета. Главное действие глюкагона - увеличение уровня глюкозы в крови за счет стимулирования ее продукции в печени. Хотя поддержание физиологического уровня глюкозы в крови обеспечивают в первую очередь инсулин и глюкагон, другие гормоны - гормон роста, кортизол и адреналин - также играют существенную роль.
Желудочно-кишечные гормоны.
Гормоны желудочно-кишечного тракта - гастрин, холецистокинин, секретин и панкреозимин. Это полипептиды, секретируемые слизистой оболочкой желудочно-кишечного тракта в ответ на специфическую стимуляцию. Полагают, что гастрин стимулирует секрецию соляной кислоты; холецистокинин контролирует опорожнение желчного пузыря, а секретин и панкреозимин регулируют выделение сока поджелудочной железы. Нейрогормоны - группа химических соединений, секретируемых нервными клетками (нейронами). Эти соединения обладают гормоноподобными свойствами, стимулируя или подавляя активность других клеток; они включают упомянутые ранее рилизинг-факторы, а также нейромедиаторы, функции которых заключается в передаче нервных импульсов через узкую синаптическую щель, отделяющую одну нервную клетку от другой. К нейромедиаторам относятся дофамин, адреналин, норадреналин, серотонин, гистамин, ацетилхолин и гамма-аминомасляная кислота. В середине 1970-х годов был открыт ряд новых нейромедиаторов, обладающих морфиноподобным обезболивающим действием; они получили название "эндорфины", т.е. "внутренние морфины". Эндорфины способны связываться со специальными рецепторами в структурах головного мозга; в результате такого связывания в спинной мозг посылаются импульсы, которые блокируют проведение поступающих болевых сигналов. Болеутоляющее действие морфина и других опиатов несомненно обусловлено их сходством с эндорфинами, обеспечивающим их связывание с теми же блокирующими боль рецепторами.
ТЕРАПЕВТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ГОРМОНОВ
Гормоны использовались первоначально в случаях недостаточности какой-либо из желез внутренней секреции для замещения или восполнения возникшего гормонального дефицита. Первым эффективным гормональным препаратом был экстракт щитовидной железы овцы, примененный в 1891 английским врачом Г.Марри для лечения микседемы. На сегодняшний день гормональная терапия способна восполнить недостаточную секрецию практически любой эндокринной железы; прекрасные результаты дает и заместительная терапия, проводимая после удаления той или иной железы. Гормоны могут использоваться также для стимуляции работы желез. Гонадотропины, например, применяют для стимуляции половых желез, в частности для индукции овуляции. Кроме заместительной терапии, гормоны и гормоноподобные препараты используются и для других целей. Так, избыточную секрецию андрогена надпочечниками при некоторых заболеваниях подавляют кортизоноподобными препаратами. Другой пример - использование эстрогенов и прогестерона в противозачаточных таблетках для подавления овуляции. Гормоны могут применяться и как агенты, нейтрализующие действие других медикаментозных средств; при этом исходят из того, что, например, глюкокортикоиды стимулируют катаболические процессы, а андрогены - анаболические. Поэтому на фоне длительного курса глюкокортикоидной терапии (скажем, в случае ревматоидного артрита) нередко дополнительно назначают анаболические средства для снижения или нейтрализации ее катаболического действия. Часто гормоны применяют как специфические лекарственные средства. Так, адреналин, расслабляющий гладкие мышцы, очень эффективен в случаях приступа бронхиальной астмы. Гормоны используются и в диагностических целях. Например, при исследовании функции коры надпочечников прибегают к ее стимуляции, вводя пациенту АКТГ, а ответ оценивают по содержанию кортикостероидов в моче или плазме. В настоящее время препараты гормонов начали применяться почти во всех областях медицины. Гастроэнтерологи используют кортизоноподобные гормоны при лечении регионарного энтерита или слизистого колита. Дерматологи лечат угри эстрогенами, а некоторые кожные болезни - глюкокортикоидами; аллергологи применяют АКТГ и глюкокортикоиды при лечении астмы, крапивницы и других аллергических заболеваний. Педиатры прибегают к анаболическим веществам, когда необходимо улучшить аппетит или ускорить рост ребенка, а также к большим дозам эстрогенов, чтобы закрыть эпифизы (растущие части костей) и предотвратить таким образом чрезмерный рост. При трансплантации органов используют глюкокортикоиды, которые уменьшают шансы отторжения трансплантата. Эстрогены могут ограничивать распространение метастазирующего рака молочной железы у больных в период после менопаузы, а андрогены применяются с той же целью до менопаузы. Урологи используют эстрогены, чтобы затормозить распространение рака предстательной железы. Специалисты по внутренним болезням обнаружили, что целесообразно использовать кортизоноподобные соединения при лечении некоторых типов коллагенозов, а гинекологи и акушеры применяют гормоны при терапии многих нарушений, прямо не связанных с гормональным дефицитом.
ГОРМОНЫ БЕСПОЗВОНОЧНЫХ
Гормоны беспозвоночных изучены главным образом на насекомых, ракообразных и моллюсках, причем многое в этой области все еще остается неясным. Иногда отсутствие сведений о гормонах того или иного вида животных объясняется просто тем, что у данного вида нет специализированных эндокринных желез, а отдельные группы клеток, секретирующих гормоны, с трудом поддаются обнаружению. Вероятно, любая функция, регулируемая гормонами в организме позвоночных, сходным образом регулируется и у беспозвоночных. У млекопитающих, например, нейромедиатор норадреналин учащает сердцебиение, а у краба Cancer pagurus и омара Homarus vulgaris ту же роль играют нейрогормоны - биологически активные вещества, вырабатываемые нейросекреторными клетками нервной ткани. Обмен кальция в организме регулируется у позвоночных гормоном паращитовидных желез, а у некоторых беспозвоночных - гормоном, который вырабатывается особым органом, расположенным в грудном отделе тела. Гормональной регуляции подчинены и многие другие функции у беспозвоночных, в том числе метаморфоз, движение и перегруппировка пигментных гранул в хроматофорах, интенсивность дыхания, созревание половых клеток в гонадах, формирование вторичных половых признаков и рост тела.
Метаморфоз. Наблюдения над насекомыми выявили роль гормонов в регуляции метаморфоза, причем показано, что ее осуществляют несколько гормонов. Мы остановимся на двух важнейших гормонах-антагонистах. На каждом из тех этапов развития, которые сопровождаются метаморфозом, нейросекреторные клетки головного мозга насекомых вырабатывают т.н. мозговой гормон, стимулирующий в проторакальной (переднегрудной) железе синтез стероидного гормона, индуцирующего линьку, - экдизона. В то самое время, когда в организме насекомого синтезируется экдизон, в прилежащих телах (corpora allata) - двух небольших железах, расположенных в голове насекомого - вырабатывается т.н. ювенильный гормон, который подавляет действие экдизона и обеспечивает после линьки следующую личиночную стадию. По мере роста личинки ювенильного гормона вырабатывается все меньше и, наконец, количество его оказывается уже недостаточным для того, чтобы препятствовать линьке. Например, у бабочек уменьшение содержания ювенильного гормона приводит к тому, что последняя личиночная стадия после линьки превращается в куколку.

Взаимодействие гормонов, регулирующих метаморфоз, продемонстрировано в ряде экспериментов. Известно например, что клоп Rhodnius prolixus в ходе нормального жизненного цикла до превращения во взрослую форму (имаго) претерпевает пять линек. Если, однако, обезглавить личинки, то у выживших метаморфоз окажется укороченным и из них разовьются хотя и миниатюрные, но в остальном нормальные взрослые формы. То же явление можно наблюдать и у личинки бабочки цекропиевого шелкопряда (Samia cecropia), если удалить у нее прилежащие тела и тем самым исключить синтез ювенильного гормона. В этом случае, так же, как у Rhodnius, метаморфоз будет укороченным и взрослые формы окажутся меньше обычных. И наоборот, если от молодой гусеницы цекропиевого шелкопряда пересадить прилежащие тела личинке, уже готовой превратиться в имаго, то метаморфоз затянется и личинки будут крупнее обычных. Ювенильный гормон удалось недавно синтезировать и теперь его можно получать в больших количествах. Опыты показали, что если воздействовать гормоном в высоких концентрациях на яйца насекомых или на иной стадии их развития, когда этот гормон в норме отсутствует, то возникают серьезные нарушения метаболизма, приводящие к гибели насекомого. Подобный результат позволяет надеяться, что синтетический гормон окажется новым и весьма эффективным средством борьбы с насекомыми-вредителями. По сравнению с химическими инсектицидами, ювенильный гормон имеет ряд важных преимуществ. Он не оказывает влияния на жизнедеятельность других организмов, в отличие от пестицидов, серьезно нарушающих экологию целых регионов. Не менее важно и то, что к любому пестициду у насекомого рано или поздно может развиться устойчивость, но маловероятно, чтобы у какого-нибудь насекомого развилась устойчивость к своим собственным гормонам.
Размножение. Эксперименты свидетельствуют о том, что гормоны участвуют в размножении насекомых. У комаров, например, они регулируют как образование яиц, так и их откладку. Когда самка комара переваривает поглощенную ею порцию крови, стенки желудка и брюшка растягиваются, что служит пусковым сигналом для передачи импульсов в мозг. Примерно через час особые клетки в верхней части мозга выделяют в гемолимфу ("кровь"), циркулирующую в полости тела, гормон, стимулирующий секрецию другого гормона двумя железами, расположенными в области пережима, или шейки. Этот второй гормон стимулирует не только созревание яиц, но и запасание в них питательных веществ. У зрелых самок комара в светлые часы суток под воздействием света на соответствующие центры нервной системы выделяется специальный гормон, стимулирующий откладку яиц, что обычно происходит после полудня, т.е. еще в дневное время. При искусственной смене "ночи на день" этот порядок может быть нарушен: в опытах с комаром Aedes aegypti (переносчиком желтой лихорадки) самки откладывали яйца ночью, если их держали ночью в освещенных садках, а днем - в затемненных. У большинства видов насекомых откладку яиц стимулирует гормон, вырабатываемый определенным участком прилежащих тел. У тараканов, кузнечиков, клопов и мух созревание яичников зависит от одного из гормонов, секретируемых прилежащими телами; в отсутствие этого гормона яичники не созревают. В свою очередь яичники вырабатывают гормоны, влияющие на прилежащие тела. Так, при удалении яичников наблюдалась дегенерация прилежащих тел. Если же такому насекомому пересаживали зрелые яичники, то спустя некоторое время обычный размер прилежащих тел восстанавливался.
Половые различия. Многим беспозвоночным, в том числе и насекомым, свойствен половой диморфизм, т.е. различие морфологических признаков у мужских и женских особей. У комаров, например, самка питается кровью млекопитающих и ее ротовой аппарат приспособлен к прокалыванию кожи, а самцы питаются нектаром или растительными соками и хоботок у них более длинный и тонкий. У пчел половой диморфизм отчетливо коррелирует с особенностями поведения и судьбы каждой касты особей: самцы (трутни) служат лишь для размножения и после брачного полета погибают, самки представлены двумя кастами - маткой (царицей), которая имеет развитую половую систему и участвует в размножении, и стерильными рабочими пчелами. Наблюдения и эксперименты, проводимые над пчелами и другими беспозвоночными, показывают, что развитие половых признаков регулируется гормонами, которые вырабатываются половыми железами. У многих ракообразных мужской половой гормон (андроген) вырабатывается андрогенной железой, находящейся в семяпроводе. Этот гормон необходим для формирования семенников и придаточных (копулятивных) половых органов, а также для развития вторичных половых признаков. При удалении андрогенной железы меняются и форма тела, и функции, так что кастрированный самец становится в конце концов похожим на самку.
Изменение окраски. Способность к изменению окраски тела свойственна многим беспозвоночным, в том числе насекомым, ракообразным и моллюскам. Палочник Dixippus на зеленом фоне кажется зеленым, а на более темном напоминает палочку, как бы покрытую корой. У палочников, как и у многих других организмов, изменение окраски тела в зависимости от окраски фона - одно из главных средств защиты, позволяющее животному ускользнуть от внимания хищника.





В организме беспозвоночных, способных к изменению окраски тела, вырабатываются гормоны, стимулирующие движение и перегруппировку гранул пигментов. Как в светлое, так и в темное время суток, зеленый пигмент распределен в хроматофорах равномерно, поэтому в дневные часы палочник окрашен в зеленый цвет. Гранулы же коричневого и красного пигментов в условиях освещенного фона сгруппированы по краям клетки. При наступлении темноты или снижении освещенности происходит рассеивание гранул темных пигментов и насекомое приобретает окраску коры деревьев. Реакция хроматофоров вызывается нейрогормоном, выделяемым мозгом в ответ на изменение освещенности фона. Под действием света этот гормон поступает в кровь и доставляется ею к клетке-мишени. Другие гормоны насекомых, регулирующие перемещение пигментов, поступают в кровь из прилежащих тел и из ганглия (нервного узла), расположенного под пищеводом. Ретинальные пигменты сложного глаза ракообразных тоже перемещаются в ответ на изменение освещенности, и эта адаптация к свету подчинена гормональной регуляции. Кальмары и другие моллюски также имеют пигментные клетки, реакция которых на свет регулируется гормонами. У кальмара хроматофоры содержат синий, пурпурный, красный и желтый пигменты. При соответствующей стимуляции его тело может принимать различную окраску, что дает ему возможность мгновенно приспосабливаться к окружающей среде. Механизмы, управляющие перемещением пигментов в хроматофорах, различны. У осьминога Eledone в хроматофорах имеются волокна, способные сокращаться в ответ на действие тирамина - гормона, вырабатываемого слюнной железой. При их сокращении область, занимаемая пигментами, расширяется и тело осьминога темнеет. При расслаблении волокон в ответ на действие другого гормона, бетаина, эта область сокращается и тело светлеет. Иной механизм перемещения пигментов обнаружен в клетках кожи насекомых, в клетках сетчатки некоторых ракообразных и у холоднокровных позвоночных. У этих животных пигментные гранулы связаны с высокополимерными белковыми молекулами, которые способны переходить из состояния золя в гель и обратно. При переходе в состояние геля объем, занимаемый белковыми молекулами, уменьшается и пигментные гранулы собираются в центре клетки, что наблюдается в темновой фазе. В световой фазе белковые молекулы переходят в состояние золя; это сопровождается увеличением их объема и рассеиванием гранул по всей клетке.
ГОРМОНЫ ПОЗВОНОЧНЫХ
У всех позвоночных гормоны одинаковы или очень сходны, а у млекопитающих это сходство настолько велико, что некоторые гормональные препараты, полученные от животных, используются для инъекций человеку. Иногда, впрочем, тот или иной гормон действует у разных видов по-разному. Например, вырабатываемый яичниками эстроген влияет на рост перьев цыплят породы леггорн и не влияет на рост перьев у голубей. Не все исследования, посвященные роли гормонов, позволяют сделать достаточно четкие выводы. Противоречивы, например, данные, касающиеся роли гормонов в миграциях птиц. У некоторых видов, в частности у зимнего юнко, гонады весной с увеличением продолжительности дня увеличиваются, и это наводит на мысль, что именно гормоны инициируют миграцию. Однако у других видов птиц такой реакции не наблюдается. Неясна также роль гормонов в таком явлении, как зимняя спячка у млекопитающих. Тироксин, тиреоидный гормон позвоночных, вырабатываемый щитовидной железой, регулирует основной обмен и процессы развития. Эксперименты показали, что у пресмыкающихся, например, периодические линьки, по крайней мере частично, регулируются тироксином. У земноводных функция тироксина лучше всего изучена на лягушках. Головастики, в пищу которых добавляли экстракт щитовидной железы, переставали расти и рано превращались в маленьких взрослых лягушек, т.е. у них наблюдался ускоренный метаморфоз. При удалении же у них щитовидной железы метаморфоза не происходило и они так и оставались головастиками. Важную роль играет тироксин в жизненном цикле и другого земноводного - тигровой амбистомы. Неотеническая (способная к размножению) личинка амбистомы - аксолотль - обычно не претерпевает метаморфоза, оставаясь на личиночной стадии. Однако, если добавить в пищу аксолотля небольшое количество экстракта бычьей щитовидной железы, то метаморфоз произойдет и из аксолотля разовьется маленькая черная дышащая воздухом амбистома.
Водный и ионный баланс. У земноводных и млекопитающих диурез (мочеотделение) стимулируется гидрокортизоном - гормоном, секретируемым корой надпочечников. Противоположное - угнетающее - влияние на диурез оказывает другой гормон, который вырабатывается гипоталамусом, поступает в заднюю долю гипофиза, а из него в системный кровоток. У всех позвоночных, за исключением рыб, имеются паращитовидные железы, секретирующие гормон, способствующий поддержанию баланса кальция и фосфора. По-видимому, у костистых рыб функцию паращитовидных желез выполняют какие-то иные структуры, но точно это пока не установлено. Другие участвующие в метаболизме гормоны, регулирующие баланс ионов калия, натрия и хлора, секретируются корой надпочечников и задней долей гипофиза. Гормоны коры надпочечников повышают содержание ионов натрия и хлора в крови у млекопитающих, пресмыкающихся и лягушек.
Инсулин. Два гормона, регулирующие содержание сахара в крови - инсулин и глюкагон, - вырабатываются специализированными клетками поджелудочной железы, составляющими островки Лангерганса. Различают четыре типа клеток: альфа, бета, C и D. Доля этих клеточных типов в разных группах животных варьирует, а у ряда земноводных имеются только бета-клетки. Некоторые виды рыб не имеют поджелудочной железы и островковая ткань обнаруживается у них в стенке кишечника; есть также виды, у которых она находится в печени. Известны рыбы, у которых скопления островковой ткани представлены в виде отдельных эндокринных желез. Секретируемые островковыми клетками гормоны - инсулин и глюкагон - выполняют, по-видимому, одну и ту же функцию у всех позвоночных.
Гормоны гипофиза. Гипофиз секретирует разнообразные гормоны; их действие хорошо известно по наблюдениям над млекопитающими, но ту же роль играют они и во всех других группах позвоночных. Если, например, впавшей в зимнюю спячку самке лягушки сделать инъекцию экстракта из передней доли гипофиза, это приведет к стимуляции созревания яиц и она начнет откладывать икру. У африканского ткачика вырабатываемый передней долей гипофиза гонадотропный гормон инициирует секрецию семенниками мужского полового гормона. Этот гормон стимулирует расширение выносящих канальцев семенника, а также образование пигмента меланина в клюве и как следствие потемнение клюва. У того же африканского ткачика вырабатываемый задней долей гипофиза лютеинизирующий гормон инициирует синтез пигментов в некоторых перьях и секрецию прогестерона желтым телом яичника. Изменение окраски тела холоднокровных животных, например хамелеонов и некоторых рыб, регулируется еще одним гипофизарным гормоном, а именно меланоцит-стимулирующим гормоном (МСГ), или интермедином. Имеется этот гормон также и у птиц и млекопитающих, но какого-либо влияния на пигментацию он в большинстве случаев не оказывает. Присутствие МСГ в организме птиц и млекопитающих, где это гормон не играет, по-видимому, заметной роли, позволяет сделать ряд предположений по поводу эволюции позвоночных.
См. также

Сколько гормонов синтезирует организм человека, Вы узнаете из этой статьи.

Что такое гормоны?

Гормоны являют собой химические сигнальные вещества, которые выделяются эндокринной железой прямо в кровь и оказывают многогранное и сложное действие на весь организм или на отдельные его части – ткани и органы. Другими словами, это регуляторы некоторых процессов, происходящих в системах организма.

Сегодня науке известно и описано больше 150 гормонов. Согласно химическому строению выделяют 3 группы гормонов:

  • Белково – пептидные. К ним относят гормоны гипофиза и гипоталамуса, паращитовидной и поджелудочной желез, а также гормон кальцитонин.
  • Производные аминокислот . К ним относят амины, синтезирующиеся в мозговом слое надпочечников — норадреналин и адреналин; в эпифизе — мелатонин; в щитовидной железе – тироксин и трииодтиронин.
  • Стероидные гормоны . Они синтезируются в половых железах и коре надпочечников. Выделяют: прогестерон, тестостерон, андрогены, эстрогены и гормоны коры надпочечников.

Сколько гормонов у человека?

Гормоны человека в зависимости от механизма и синтеза их действия подразделяют на 4 группы:

  1. Нейросекреторные гормоны . Их вырабатывают плацента, а также нервные клетки в гипофизе и гипоталамусе.
  2. Гландулярные гормоны. Их вырабатывают щитовидная железа, надпочечники, яичники.
  3. Гландотропные гормоны . Их вырабатывает эндокринная система.
  4. Тканевые гормоны . К ним относят цитокины, соматомедины, гормон роста.

В человеческом организме имеется около 100 гормонов и веществ, которые составляют гормональный фон. Самыми распространенными являются – серотонин, мелатонин, ренин, альдостерон, секретин, вазопрессин, глюкагон, инсулин, пептид.

Но количество гормонов у каждого человека разное. Их количество зависит от пола, возраста и состояния здоровья. В среднем у каждого человека синтезируется около 50 гормонов.

Впервые гормоны были полно описаны в книге «Гормоны и их эффекты» под авторством В.Верина и В. Иванова. В ней изложена суть и действие всех 74 гормонов, вырабатываемых организмом человека.

Надеемся, что из этой статьи Вы узнали, сколько гормонов у человека.

Биологически активное вещество (БАВ), физиологически активное вещество (ФАВ) - вещество, которое в малых количествах (мкг, нг) оказывает выраженный физиологический эффект на различные функции организма.

Гормон — физиологически активное вещество, вырабатываемое или специализированными эндокринными клетками, выделяемое во внутреннюю среду организма (кровь, лимфа) и оказывающее дистантное действие на клетки-мишени.

Гормон - это сигнальная молекула, секретируемая эндокринными клетками, которая посредством взаимодействия со специфическими рецепторами клеток-мишеней регулирует их функции. Поскольку гормоны являются носителями информации, то они, как и другие сигнальные молекулы, обладают высокой биологической активностью и вызывают ответные реакции клеток-мишеней в очень малых концентрациях (10 -6 — 10 -12 М/л).

Клетки-мишени (ткани-мишени, органы-мишени) — клетки, ткани или органы, в которых имеются специфичные для данного гормона рецепторы. Некоторые гормоны имеют единственную ткань-мишень, тогда как другие оказывают влияние повсеместно в организме.

Таблица. Классификация физиологически активных веществ

Свойства гормонов

Гормоны имеют ряд общих свойств. Обычно они образуются специализированными эндокринными клетками. Гормоны обладают избирательностью действия, которая достигается благодаря связыванию со специфическими рецепторами, находящимися на поверхности клеток (мембранные рецепторы) или внутри них (внутриклеточные рецепторы), и запуску каскада процессов внутриклеточной передачи гормонального сигнала.

Последовательность событий передачи гормонального сигнала может быть представлена в виде упрощенной схемы «гормон (сигнал, лиганд) -> рецептор -> второй (вторичный) посредник -> эффекторные структуры клетки -> физиологический ответ клетки». У большинства гормонов отсутствует видовая специфичность (за исключением ), что позволяет изучать их эффекты на животных, а также использовать гормоны, полученные от животных, для лечения больных людей.

Различают три варианта межклеточного взаимодействия с помощью гормонов:

  • эндокринный (дистантный), когда они доставляются к клеткам-мишеням от места продукции кровью;
  • паракринный — гормоны диффундируют к клетке-мишени от рядом расположенной эндокринной клетки;
  • аутокринный — гормоны воздействуют на клетку-продуцент, которая одновременно является для него клеткой-мишенью.

По химической структуре гормоны делят на три группы:

  • пептиды (число аминокислот до 100, например тиротропина рилизинг-гормон, АКТГ) и белки (инсулин, гормон роста, и др.);
  • производные аминокислот: тирозина (тироксин, адреналин), триптофана — мелатонин;
  • стероиды, производные холестерола (женские и мужские половые гормоны, альдостерон, кортизол, кальцитриол) и ретиноевая кислота.

По выполняемой функции гормоны делят на три группы:

  • эффекторные гормоны , действующие непосредственно на клетки-мишени;
  • тронные гормоны гипофиза , контролирующие функцию периферических эндокринных желез;
  • гормоны гипоталамуса , регулирующие секрецию гормонов гипофизом.

Таблица. Типы действия гормонов

Тип действия

Характеристика

Гормональное (гемокринное)

Действие гормона на значительном удалении от места образования

Изокринное (местное)

Гормон, синтезируемый в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой. Его высвобождение осуществляется в межтканевую жидкость и кровь

Нейрокринное (нейроэндокринное)

Действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейромедиатора или нейромодулятора

Паракринное

Разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости

Юкстакринное

Разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передастся через плазматическую мембрану рядом расположенной клетки

Аутокринное

Высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность

Соликринное

Высвобождающийся из клетки гормон поступает в просвет протока и достигает, таким образом, другой клетки, оказывая на нес специфическое воздействие (характерно для желудочно- кишечных гормонов)

Гормоны циркулируют в крови в свободном (активная форма) и связанном (неактивная форма) состоянии с белками плазмы или форменных элементов. Биологической активностью обладают гормоны в свободном состоянии. Содержание их в крови зависит от скорости секреции, степени связывания, захвата и скорости метаболизма в тканях (связывания со специфическими рецепторами, разрушения или инактивации в клетках-мишенях или гепатоцитах), удаления с мочой или желчью.

Таблица. Физиологически активные вещества, открытые в последнее время

Ряд гормонов может подвергаться в клетках-мишенях химическим превращениям в более активные формы. Так, гормон «тироксин», подвергаясь дейодированию, превращается в более активную форму — трийодтиронин. Мужской половой гормон тестостерон в клетках-мишенях может не только превращаться в более активную форму — дегидротестостерон, но и в женские половые гормоны группы эстрогенов.

Действие гормона на клетку-мишень обусловлено связыванием, стимуляцией специфического к нему рецептора, после чего происходит передача гормонального сигнала на внутриклеточный каскад превращений. Передача сигнала сопровождается его многократным усилением, и действие на клетку небольшого числа молекул гормона может сопровождаться мощной ответной реакцией клеток-мишеней. Активация гормоном рецептора сопровождается также включением внутриклеточных механизмов, прекращающих ответ клетки на действие гормона. Это могут быть механизмы, понижающие чувствительность (десенситизация/адаптация) рецептора к гормону; механизмы, дефосфорилирующие внутриклеточные ферментные системы и др.

Рецепторы к гормонам, как и к другим сигнальным молекулам, локализованы на клеточной мембране или внутри клетки. С рецепторами клеточной мембраны (1-TMS, 7-TMS и лигандзависимые ионные каналы) взаимодействуют гормоны гидрофильной (лииофобной) природы, для которых клеточная мембрана не проницаема. Ими являются катехоламины, мелатонин, серотонин, гормоны белково-пептидной природы.

Гормоны гидрофобной (липофильной) природы диффундируют через плазматическую мембрану и связываются с внутриклеточными рецепторами. Эти рецепторы делятся на цитозольные (рецепторы стероидных гормонов — глюко- и минералокортикоидов, андрогенов и прогестинов) и ядерные (рецепторы тиреоидных йодсодержащих гормонов, кальцитриола, эстрогенов, ретиноевой кислоты). Цитозольные рецепторы и рецепторы эстрогенов связаны с белками теплового шока (БТШ), что предотвращает их проникновение в ядро. Взаимодействие гормона с рецептором приводит к отделению БТШ, образованию гормон-рецепторного комплекса и активации рецептора. Комплекс гормон-рецептор перемещается в ядро, где он взаимодействует со строго определенными гормон-чувствительными (узнающими) участками ДНК. Это сопровождается изменением активности (экспрессией) определенных генов, контролирующих синтез белков в клетке и другие процессы.

По использованию тех или иных внутриклеточных путей передачи гормонального сигнала наиболее распространенные гормоны можно разделить на ряд групп (табл. 8.1).

Таблица 8.1. Внутриклеточные механизмы и пути действия гормонов

Гормоны контролируют разнообразные реакции клеток-мишеней и через них — физиологические процессы организма. Физиологические эффекты гормонов зависят от их содержания в крови, количества и чувствительности рецепторов, состояния пострецепторных структур в клетках-мишенях. Под действием гормонов может происходить активация или торможение энергетического и пластического метаболизма клеток, синтеза различных, в том числе белковых веществ (метаболическое действие гормонов); изменение скорости деления клетки, ее дифференцировки (морфогенетическое действие), инициирование запрограммированной гибели клетки (апоптоз); запуск и регуляция сокращения и расслабления гладких миоцитов, секреции, абсорбции (кинетическое действие); изменение состояния ионных каналов, ускорение или торможение генерации электрических потенциалов в водителях ритма (корригирующее действие), облегчение или угнетение влияния других гормонов (реактогенное действие) и т.д.

Таблица. Распределение гормона в крови

Скорость возникновения в организме и продолжительность ответных реакций на действие гормонов зависит от типа стимулируемых рецепторов и скорости метаболизма самих гормонов. Изменения физиологических процессов могут наблюдаться через несколько десятков секунд и длиться кратковременно при стимуляции рецепторов плазматической мембраны (например, сужение сосудов и повышение артериального давления крови под действием адреналина) или наблюдаться через несколько десятков минут и длиться часами при стимуляции ядерных рецепторов (например, усиление обмена в клетках и увеличение потребления кислорода организмом при стимуляции тиреоидных рецепторов трийодтиронином).

Таблица. Время действия физиологически активных веществ

Поскольку одна и та же клетка может содержать рецепторы к разным гормонам, то она способна быть одновременно клеткой-мишенью для нескольких гормонов и других сигнальных молекул. Действие одного гормона на клетку нередко сочетается с влиянием других гормонов, медиаторов, цитокинов. При этом в клетках-мишенях может происходить запуск ряда путей передачи сигналов, в результате взаимодействия которых может наблюдаться усиление или торможение ответной реакции клетки. Например, на гладкий миоцит стенки сосудов могут одновременно действовать норадреналин и , суммируя их сосудосуживающее влияние. Сосудосуживающее действие вазопрессина может быть устранено или ослаблено одновременным действием на гладкие миоциты сосудистой стенки брадикинина или оксида азота.

Регуляция образования и секреции гормонов

Регуляция образования и секреции гормонов является одной из важнейших функций и нервной систем организма. Среди механизмов регуляции образования и секреции гормонов выделяют влияние ЦНС, «тройных» гормонов, влияние по каналам отрицательной обратной связи концентрации гормонов в крови, влияние конечных эффектов гормонов на их секрецию, влияние суточных и других ритмов.

Нервная регуляция осуществляется в различных эндокринных железах и клетках. Это регуляция образования и секреции гормонов нейросекреторными клетками переднего гипоталамуса в ответ на поступление к нему нервных импульсов с различных областей ЦНС. Эти клетки обладают уникальной способностью возбуждаться и трансформировать возбуждение в образование и секрецию гормонов, стимулирующих (рилизинг-гормоны, либерины) или тормозящих (статины) секрецию гормонов гипофизом. Например, при увеличении притока нервных импульсов к гипоталамусу в условиях психоэмоционального возбуждения, голода, болевого воздействия, действии тепла или холода, при инфекции и в других чрезвычайных условиях, нейросекреторные клетки гипоталамуса высвобождают в портальные сосуды гипофиза кортикотропина рилизинг-гормон, который усиливает секрецию адренокортикотропного гормона (АКТГ) гипофизом.

Непосредственное влияние на образование и секрецию гормонов оказывает АНС. При повышении тонуса СНС увеличивается секреция тройных гормонов гипофизом, секреция катехоламинов мозговым веществом надпочечников, тиреоидных гормонов щитовидной железой, снижается секреция инсулина. При повышении тонуса ПСНС увеличивается секреция инсулина, гастрина и тормозится секреция тиреоидных гормонов.

Регуляции тронными гормонами гипофиза используется для контроля образования и секреции гормонов периферическими эндокринными железами (щитовидной, корой надпочечников, половыми железами). Секреция тропных гормонов находится под контролем гипоталамуса. Тропные гормоны получили свое название из-за их способности связываться (обладать сродством) с рецепторами клеток-мишеней, формирующих отдельные периферические эндокринные железы. Троп- ный гормон к тироцитам щитовидной железы называют тиро- тропином или тиреотропным гормоном (ТТГ), к эндокринным клеткам коры надпочечников — адренокортикотропным гормоном (АКГТ). Тропные гормоны к эндокринным клеткам половых желез получили название: лютропин или лютеинизирующий гормон (ЛГ) — к клеткам Лейдига, желтому телу; фоллитропин или фолликулостимулирующий гормон (ФСГ) — к клеткам фолликулов и клеткам Сертоли.

Тропные гормоны при повышении их уровня в крови многократно стимулируют секрецию гормонов периферическими эндокринными железами. Они могут оказывать на них также другие эффекты. Так, например, ТТГ усиливает в щитовидной железе кровоток, активирует метаболические процессы в тироцитах, захват ими йода из крови, ускоряет процессы синтеза и секреции тиреоидных гормонов. При избыточном количестве ТТГ наблюдается гипертрофия щитовидной железы.

Регуляция обратными связями используется для контроля секреции гормонов гипоталамуса и гипофиза. Ее суть заключается в том, что нейросекреторные клетки гипоталамуса имеют рецепторы и являются клетками-мишенями гормонов периферической эндокринной железы и тройного гормона гипофиза, контролирующего секрецию гормонов этой периферической железой. Таким образом, если под влиянием гипоталамического тиреотропин-рилизинг-гормона (ТРГ) увеличится секреция ТТГ, то последний свяжется не только с рецепторами тирсоцитов, но и с рецепторами нейросекреторных клеток гипоталамуса. В щитовидной железе ТТГ стимулирует образование тиреоидных гормонов, а в гипоталамусе — тормозит дальнейшую секрецию ТРГ. Связь между уровнем ТТГ в крови и процессами образования и секреции ТРГ в гипоталамусе получила название короткой петли обратной связи.

На секрецию ТРГ в гипоталамусе оказывает влияние и уровень гормонов щитовидной железы. Если их концентрация в крови повышается, то они связываются с рецепторами тиреоидных гормонов нейросекреторных клеток гипоталамуса и тормозят синтез и секрецию ТРГ. Связь между уровнем тиреоидных гормонов в крови и процессами образования и секреции ТРГ в гипоталамусе получила название длинной петли обратной связи. Имеются экспериментальные данные о том, что гормоны гипоталамуса не только регулируют синтез и выделение гормонов гипофиза, но и тормозят собственное выделение, что определяют понятием сверхкороткой петли обратной связи.

Совокупность железистых клеток гипофиза, гипоталамуса и периферических эндокринных желез и механизмов их взаимного влияния друг на друга назвали системами или осями гипофиз — гипоталамус — эндокринная железа. Выделяют системы (оси) гипофиз — гипоталамус — щитовидная железа; гипофиз — гипоталамус — кора надпочечников; гипофиз — гипоталамус — половые железы.

Влияние конечных эффектов гормонов на их секрецию имеет место в островковом аппарате поджелудочной железы, С-клетках щитовидной железы, паращитовидных железах, гипоталамусе и др. Это демонстрируется следующими примерами. При повышении в крови уровня глюкозы стимулируется секреция инсулина, а при понижении — глюкагона. Эти гормоны по паракринному механизму тормозят секрецию друг друга. При повышении в крови уровня ионов Са 2+ стимулируется секреция кальцитонина, а при понижении — паратирина. Прямое влияние концентрации веществ на секрецию гормонов, контролирующих их уровень, является быстрым и эффективным способом поддержания концентрации этих веществ в крови.

Среди рассматриваемых механизмов регуляции секреции гормонов их конечными эффектами можно отметить регуляцию секреции антидиуретического гормона (АДГ) клетками заднего гипоталамуса. Секреция этого гормона стимулируется при повышении осмотического давления крови, например при потере жидкости. Снижение диуреза и задержка жидкости в организме под действием АДГ ведут к снижению осмотического давления и торможению секреции АДГ. Похожий механизм используется для регуляции секреции натрийуретического пептида клетками предсердий.

Влияние суточных и других ритмов на секрецию гормонов имеет место в гипоталамусе, надпочечниках, половых, шишковидной железах. Примером влияния суточного ритма является суточная зависимость секреции АКТГ и кортикостероидных гормонов. Самый низкий их уровень в крови наблюдается в полночь, а самый высокий — утром после пробуждения. Наиболее высокий уровень мелатонина регистрируется ночью. Хорошо известно влияние лунного цикла на секрецию половых гормонов у женщин.

Определение гормонов

Секреция гормонов - поступление гормонов во внутреннюю среду организма. Полипептидные гормоны накапливаются в гранулах и секретируются путем экзоцитоза. Стероидные гормоны не накапливаются в клетке и секретируются сразу после синтеза путем диффузии через клеточную мембрану. Секреция гормонов в большинстве случаев имеет циклический, пульсирующий характер. Периодичность секреции — от 5-10 мин до 24 ч и более (распространенный ритм — около 1 ч).

Связанная форма гормона — образование обратимых, соединенных нековалентными связями комплексов гормонов с белками плазмы и форменными элементами. Степень связывания различных гормонов сильно варьирует и определяется их растворимостью в плазме крови и наличием транспортного белка. Например, 90 % кортизола, 98 % тестостерона и эстрадиола, 96 % трийодтиронина и 99 % тироксина связываются с транспортными белками. Связанная форма гормона не может взаимодействовать с рецепторами и формирует резерв, который может быть быстро мобилизован для пополнения пула свободного гормона.

Свободная форма гормона — физиологически активное вещество в плазме крови в несвязанном с белком состоянии, способное взаимодействовать с рецепторами. Связанная форма гормона находится в динамическом равновесии с пулом свободного гормона, который в свою очередь находится в равновесии с гормоном, связанным с рецепторами в клетках-мишенях. Большинство полипептидных гормонов, за исключением соматотропина и окситоцина, циркулирует в низких концентрациях в крови в свободном состоянии, не связываясь с белками.

Метаболические превращения гормона - его химическая модификация в тканях-мишенях или других образованиях, обусловливающая снижение/повышение гормональной активности. Важнейшим местом обмена гормонов (их активации или инактивации) является печень.

Скорость метаболизма гормона - интенсивность его химического превращения, которая определяет длительность циркуляции в крови. Период полураспада катехоламинов и полипептидных гормонов составляет несколько минут, а тиреоидных и стероидных гормонов — от 30 мин до нескольких суток.

Гормональный рецептор — высокоспециализированная клеточная структура, входящая в состав плазматических мембран, цитоплазмы или ядерного аппарата клетки и образующая специфичное комплексное соединение с гормоном.

Органоспецифичность действия гормона - ответные реакции органов и тканей на физиологически активные вещества; они строго специфичны и не могут быть вызваны другими соединениями.

Обратная связь — влияние уровня циркулирующего гормона на его синтез в эндокринных клетках. Длинная цепь обратной связи — взаимодействие периферической эндокринной железы с гипофизарными, гипоталамическими центрами и с супрагипоталамическими областями ЦНС. Короткая цепь обратной связи — изменение секреции гипофизарного тронного гормона, модифицирует секрецию и высвобождение статинов и либеринов гипоталамуса. Ультракороткая цепь обратной связи — взаимодействие в пределах эндокринной железы, при котором выделение гормона влияет на процессы секреции и высвобождения его самого и других гормонов из данной железы.

Отрицательная обратная связь - повышение уровня гормона, приводящее к торможению его секреции.

Положительная обратная связь — повышение уровня гормона, обусловливающее стимуляцию и возникновение пика его секреции.

Анаболические гормоны - физиологически активные вещества, способствующие образованию и обновлению структурных частей организма и накоплению в нем энергии. К таким веществам относятся гонадотропные гормоны гипофиза (фоллитропин, лютропин), половые стероидные гормоны (андрогены и эстрогены), гормон роста (соматотропин), хориони- ческий гонадотропин плаценты, инсулин.

Инсулин — белковое вещество, вырабатываемое в β-клетках островков Лангерганса, состоящее из двух полипептидных цепей (А-цепь — 21 аминокислота, В-цепь — 30), снижающее уровень глюкозы крови. Первый белок, у которого была полностью определена первичная структура Ф. Сенгером в 1945-1954 гг.

Катаболические гормоны — физиологически активные вещества, способствующие распаду различных веществ и структур организма и высвобождению из него энергии. К таким веществам относятся кортикотропин, глюкокортикоиды (корти- зол), глюкагон, высокие концентрации тироксина и адреналина.

Тироксин (тетрайодтиронин) - йодсодержащее производное аминокислоты тирозина, вырабатываемое в фолликулах щитовидной железы, повышающее интенсивность основного обмена, теплопродукцию, оказывающее влияние на рост и дифференцировку тканей.

Глюкагон - полипептид, вырабатываемый в а-клетках островков Лангерганса, состоящий из 29 аминокислотных остатков, стимулирующий распад гликогена и повышающий уровень глюкозы крови.

Кортикостероидные гормоны - соединения, образующиеся в корковом веществе надпочечников. В зависимости от числа атомов углерода в молекуле делят на С 18 -стероиды — женские половые гормоны — эстрогены, С 19 -стероиды — мужские половые гормоны — андрогены, С 21 -стероиды — собственно кортикостероидные гормоны, обладающие специфическим физиологическим действием.

Катехоламины — производные пирокатехина, активно участвующие в физиологических процессах в организме животных и человека. К катехоламинам относятся адреналин, норадреналин и дофамин.

Симпатоадреналовая система — хромаффинные клетки мозгового вещества надпочечников и иннервирующие их преганглионарные волокна симпатической нервной системы, в которых синтезируются катехоламины. Хромаффинные клетки также обнаружены в аорте, каротидном синусе, внутри и около симпатических ганглиев.

Биогенные амины — группа азотсодержащих органических соединений, образующихся в организме путем декарбоксилирования аминокислот, т.е. отщепления от них карбоксильной группы — СООН. Многие из биогенных аминов (гистамин, серотонин, норадреналин, адреналин, дофамин, тирамин и др.) оказывают выраженный физиологический эффект.

Эйкозаноиды - физиологически активные вещества, производные преимущественно арахидоновой кислоты, оказывающие разнообразные физиологические эффекты и подразделяющиеся на группы: простагландины, простациклины, тром- боксаны, левугландины, лейкотриены и др.

Регуляторные пептиды — высокомолекулярные соединения, представляющие собой цепочку аминокислотных остатков, соединенных пептидной связью. Регуляторные пептиды, насчитывающие до 10 аминокислотных остатков, называют олигопептидами, от 10 до 50 — полипептидами, свыше 50 — белками.

Антигормон — защитное вещество, вырабатываемое организмом при длительном введении белковых гормональных препаратов. Образование антигормона является иммунологической реакцией на введение извне чужеродного белка. По отношению к собственным гормонам организм не образует антигормоны. Однако могут быть синтезированы вещества, близкие по строению к гормонам, которые при введении в организм действуют как антиметаболиты гормонов.

Антиметаболиты гормонов — физиологически активные соединения, близкие по строению к гормонам и вступающие с ними в конкурентные, антагонистические отношения. Антиметаболиты гормонов способны занимать их место в физиологических процессах, совершающихся в организме, или блокировать гормональные рецепторы.

Тканевой гормон (аутокоид, гормон местного действия) — физиологически активное вещество, вырабатываемое неспециализированными клетками и оказывающее преимущественно местный эффект.

Нейрогормон — физиологически активное вещество, вырабатываемое нервными клетками.

Эффекторный гормон - физиологически активное вещество, оказывающее непосредственный эффект на клетки и органы-мишени.

Тронный гормон — физиологически активное вещество, действующее на другие эндокринные железы и регулирующее их функции.

Оптимальное течение физиологических процессов, рост и развитие организма, рождение новой жизни, поведенческие реакции, правильная реакция на стресс невозможна без участия биологически активных веществ. Концентрация секрета эндокринных желез очень мала, но воздействие на ткани и органы сложно переоценить.

Интересно знать, как влияют на работу сердца, ЖКТ, ЦНС, сосудов, мышц, половых желез специфические регуляторы. Гормоны человека и их функции. Таблица с описанием основных биоактивных компонентов поможет понять, почему в основе многих болезней лежит гормональный дисбаланс.

Общая информация о гормонах

Специфические вещества вырабатывают и некоторые органы. Обменные процессы, развитие, половое созревание, зачатие, беременность, роды, стабильность показателей глюкозы, реакции на стресс - лишь малая часть функций важных компонентов эндокринной системы. Несмотря на малое количество, гормоны регулируют работу и взаимодействие всех систем и внутренних органов.

Сигнальная молекула - продукт функционирования эндокринных клеток. Задача - регулирование функций организма при взаимодействии с рецепторами клеток-мишеней.

Существует два вида регуляторов:

  • основные гормоны (около 100). После синтеза вещества проникают в лимфу, кровяное русло, ликвор, далее попадают в определенные ткани либо органы, влияют на клетки. Жировые компоненты попадают внутрь единиц, белковые структуры начинают действовать на поверхности клеточных мембран;
  • гормоны-активаторы. Специфические вещества не входят в основные категории, прямо не влияют на функционирование организма. Их задача - поддерживать оптимальный процесс синтеза основных регуляторов. Продуцирование специфических компонентов происходит в гипофизе (передняя доля) и .

Эндокринная система и внутренние органы продуцируют гормоны нескольких типов:

  • классические. Вещества вырабатывают эндокринные клетки, проявляется дистантное воздействие на органы-мишени;
  • тканевые гормоны или гормоноиды. Регуляторы проявляют местное влияние;
  • метаболиты или паратгормоны. Продуцирование происходит не для регуляции, но стабильная концентрация поддерживает течение физиологических процессов;
  • нейромедиаторы. Место синтеза - нервные окончания, роль - посредники в важной синаптической передаче импульсов.

На заметку! Период действия биоактивных веществ колеблется от миллисекунд (нейромедиаторы) до суток (тиреоидные гормоны). Количество органов и тканей-мишеней зависит от категории и вида регулятора: некоторые биоактивные вещества влияют на все системы.

Виды и категории специфических веществ

Человеческий организм продуцирует несколько категорий гормонов. Каждая разновидность регуляторов отвечает за стабильность определенных процессов. Некоторые виды гормонов влияют на секрецию других биоактивных веществ: подавляют либо активизируют синтез специфических компонентов.

Категория гормонов Какой орган продуцирует Наименования Последствия отклонений
Половые Яички и яичники Мужские: андростендион, тестостерон, андростендиол, андростерон. Женские: группа эстрогены - эстрадиол (самый активный), эстриол, эстрон, прогестерон (гормон беременности), ФСГ, ЛГ, пролактин Нарушение цикла, бесплодие, снижение либидо, ожирение, проблемы с набором мышечной массы. Бессонница, раздражительность, невынашивание беременности, неправильное половое созревание, проблемы с лактацией, импотенция
Регуляторные и ростовые Гипофиз Соматотропин (отмечено взаимодействие с гормонами щитовидной железы) Акромегалия, карликовость, гигантизм (рост выше 190 и 200 см у женщин и мужчин, соответственно)
Кортикостероиды Корковый слой надпочечников Альдостерон, кортизон, гидрокортизон Основные задачи: стабильность обменных процессов, оптимальный минеральный баланс и состав крови, удаление избытка гормонов и других компонентов из организма. Кортикостероиды часто назначают при лечении хронических заболеваний и воспалительных процессов, если более слабые препараты не дают положительной динамики терапии
Обменные Щитовидная и поджелудочная железы, эпифиз, паращитовидные железы Глюкагон, паратгормон, меланин, кальцитонин, инсулин, тирозин, мелатонин, вазопрессин Нарушение уровня глюкозы, проблемы со сном и суточными ритмами, колебания фосфорно-кальциевого баланса, уровня йода, изменение процесса мочеиспускания и оттенка кожи, ожирение
Стрессовые Мозговое вещество надпочечников «Гормон радости» дофамин, «гормон стресса» адреналин, кортизол - регулирует углеводный обмен, помогает организму справиться с критическими ситуациями Ожирение, снижение иммунитета, остеопороз, дефицит тестостерона, патологии сердца и сосудов, гипертония, истощение организма, сахарный диабет

Классификация гормонов по химическому строению:

  • жиры;
  • производные аминокислот;
  • стероиды;
  • белки;
  • пептиды.

Функции в организме

Важная задача комплекса биоактивных веществ - поддерживать постоянство физиологических процессов, обеспечивать оптимальное функционирование систем, предупреждать нарушение метаболизма. Изменение уровня одного регулятора часто влияет на секрецию других компонентов ( , и , и биоактивные вещества ЩЖ, и гормоны надпочечников).

Гормоны выполняют немало важных функций:

  • регулируют концентрацию глюкозы;
  • активизируют иммунную защиту;
  • влияют на обменные процессы и стабильность веса;
  • помогают организму справиться с шоком, стрессами, тяжелой физической нагрузкой, активными действиями;
  • обеспечивают рост различных видов тканей: мышц, костей, влияют на регенерацию волос, кожи, слизистых, ногтей;
  • регулируют поведенческие реакции и настроение;
  • поддерживают обеспечение тканей энергией;
  • помогают человеку ощутить смену суточных ритмов;
  • готовят организм к началу нового жизненного этапа: половое созревание, климакс;
  • поддерживают достаточный уровень сексуального влечения, предупреждают эректильную дисфункцию;
  • влияют на стабильность цикла, подготовку организма к зачатию, сохраняют беременность, обеспечивают правильное течение родов;
  • контролируют аппетит, чувство насыщения и голода.

Что означает повышенный и на какие заболевания указывает? У нас есть ответ!

О том, какие лекарства принимать при климаксе от приливов и как облегчить состояние при гормональной перестройке написано странице.

Показания к анализам на гормоны

Нарушение секреции регуляторов различных категорий в большей или меньшей степени влияет на естественные процессы в организме. Симптоматика эндокринных патологий во многом неспецифична: многие пациенты не подозревают, что безрезультатное лечение угревой сыпи, бесплодие или связано с . Для уточнения диагноза обязательно нужны исследования уровня регуляторов различного рода.

Визит к эндокринологу нужен при появлении одного либо нескольких признаков:

  • нарушение сна;
  • частые простуды, снижение иммунитета;
  • неправильный рост скелета, непропорциональные конечности, утолщение ладоней и пальцев;
  • беспричинная апатия, вялость, общая слабость;
  • начинают слоиться и ломаться ногти, выпадают волосы, значительно изменяется работа сальных желез;
  • нарушается потенция, возникает эректильная дисфункция, снижается половое влечение;
  • человек становится нервным, легко раздражается, появляется беспричинная агрессия;
  • резко изменяется соотношение жировой и мышечной ткани, возникают области с избыточным накоплением жира либо полнота заметна на всех участках тела;
  • появляются проблемы с сердцем и сосудами, отмечены колебания давления, нарушается сердцебиение, появляется одышка;
  • неправильно протекают обменные процессы;
  • повышается либо резко снижается уровень , пациента мучает жажда, сохнет кожа, плохо заживают раны, учащается выведение урины, нарушается аппетит (признаки );
  • беременность не наступает у пары, не использующей средства контрацепции, на протяжении полугода и более;
  • менструальный цикл становится нерегулярным;
  • на лице и теле в период полового созревания появляются обильные высыпания: угри или акне, обработка пораженных участков наружными средствами не дает стойкого результата;
  • часто беспокоят проявления климактерического или предменструального синдрома.

Организм человека - сложная система со специфическими методами регуляции естественных процессов. Для воздействия на клетки-мишени эндокринные железы и некоторые внутренние органы продуцируют биоактивные вещества - гормоны. Избыток и дефицит регуляторов провоцирует развитие патологий различного рода. Людям любого возраста полезно изучить таблицу с писанием биоактивных компонентов и их функций.

Видео о роли гормонов в обмене веществ, росте и развитии человека:



error: Контент защищен !!