Быстрое возведение в квадрат двузначных чисел. Красота чисел

В книге «Магия чисел» рассказывается о десятках трюков, которые упрощают привычные математические операции. Оказалось, что умножение и деление в столбик - это прошлый век, а есть гораздо более эффективные способы деления в уме.

Вот 10 самых интересных и полезных трюков.

Умножение «3 на 1» в уме

Умножение трёхзначных чисел на однозначные - это очень простая операция. Всё, что нужно сделать, - это разбить большую задачу на несколько маленьких.

Пример : 320 × 7

  1. Разбиваем число 320 на два более простых числа: 300 и 20.
  2. Умножаем 300 на 7 и 20 на 7 по отдельности (2 100 и 140).
  3. Складываем получившиеся числа (2 240).

Возведение в квадрат двузначных чисел

Возводить в квадрат двузначные числа не намного сложнее. Нужно разбить число на два и получить приближенный ответ.

Пример : 41^2

  1. Вычтем 1 из 41, чтобы получить 40, и добавим 1 к 41, чтобы получить 42.
  2. Умножаем два получившихся числа, воспользовавшись предыдущим советом (40 × 42 = 1 680).
  3. Прибавляем квадрат числа, на величину которого мы уменьшали и увеличивали 41 (1 680 + 1^2 = 1 681).

Ключевое правило здесь - превратить искомое число в пару других чисел, которые перемножить гораздо проще. К примеру, для числа 41 это числа 42 и 40, для числа 77 - 84 и 70. То есть мы вычитаем и прибавляем одно и то же число.

Мгновенное возведение в квадрат числа, оканчивающегося на 5

С квадратами чисел, оканчивающихся на 5, вообще не нужно напрягаться. Всё, что нужно сделать, - это умножить первую цифру на число, которое на единицу больше, и добавить в конец числа 25.

Пример : 75^2

  • Умножаем 7 на 8 и получаем 56.
  • Добавляем к числу 25 и получаем 5 625.
  • Деление на однозначное число

    Деление в уме - это достаточно полезный навык. Задумайтесь о том, как часто мы делим числа каждый день. К примеру, счёт в ресторане.

    Пример : 675: 8

    1. Найдём приближенные ответы, умножив 8 на удобные числа, которые дают крайние результаты (8 × 80 = 640, 8 × 90 = 720). Наш ответ - 80 с хвостиком.
    2. Вычтем 640 из 675. Получив число 35, нужно разделить его на 8 и получить 4 с остатком 3.
    3. Наш финальный ответ - 84,3.

    Мы получаем не максимально точный ответ (правильный ответ - 84,375), но согласитесь, что даже такого ответа будет более чем достаточно.

    Простое получение 15%

    Чтобы быстро узнать 15% от любого числа, нужно сначала посчитать 10% от него (перенеся запятую на один знак влево), затем поделить получившееся число на 2 и прибавить его к 10%.

    Пример : 15% от 650

    1. Находим 10% - 65.
    2. Находим половину от 65 - это 32,5.
    3. Прибавляем 32,5 к 65 и получаем 97,5.

    Банальный трюк

    Пожалуй, все мы натыкались на такой трюк:

    Задумайте любое число. Умножьте его на 2. Прибавьте 12. Разделите сумму на 2. Вычтите из неё исходное число.

    Вы получили 6, верно? Что бы вы ни загадали, вы всё равно получите 6. И вот почему:

    1. 2x (удвоить число).
    2. 2x + 12 (прибавить 12).
    3. (2x + 12) : 2 = x + 6 (разделить на 2).
    4. x + 6 − x (вычесть исходное число).

    Этот трюк построен на элементарных правилах алгебры. Поэтому, если вы когда-нибудь услышите, что кто-то его загадывает, натяните свою самую надменную усмешку, сделайте презрительный взгляд и расскажите всем разгадку. 🙂

    Магия числа 1 089

    Этот трюк существует не одно столетие.

    Запишите любое трёхзначное число, цифры которого идут в порядке уменьшения (к примеру, 765 или 974). Теперь запишите его в обратном порядке и вычтите его из исходного числа. К полученному ответу добавьте его же, только в обратном порядке.

    Какое бы число вы ни выбрали, в результате получите 1 089.

    Быстрые кубические корни

    1 2 3 4 5 6 7 8 9 10
    1 8 27 64 125 216 343 512 729 1 000

    Как только вы запомните эти значения, находить кубический корень из любого числа будет элементарно просто.

    Пример : кубический корень из 19 683

    1. Берём величину тысяч (19) и смотрим, между какими числами она находится (8 и 27). Соответственно, первой цифрой в ответе будет 2, а ответ лежит в диапазоне 20+.
    2. Каждая цифра от 0 до 9 появляется в таблице по одному разу в виде последней цифры куба.
    3. Так как последняя цифра в задаче - 3 (19 683), это соответствует 343 = 7^3. Следовательно, последняя цифра ответа - 7.
    4. Ответ - 27.

    Примечание: трюк работает только тогда, когда исходное число является кубом целого числа.

    Правило 70

    Чтобы найти число лет, необходимых для удвоения ваших денег, нужно разделить число 70 на годовую процентную ставку.

    Пример : число лет, необходимое для удвоения денег с годовой процентной ставкой 20%.

    70: 20 = 3,5 года

    Правило 110

    Чтобы найти число лет, необходимых для утроения денег, нужно разделить число 110 на годовую процентную ставку.

    Пример : число лет, необходимое для утроения денег с годовой процентной ставкой 12%.

    110: 12 = 9 лет

    Математика - волшебная наука. Если даже такие простые трюки удивляют, то какие ещё фокусы можно придумать?

    Умение считать в уме квадраты чисел может пригодиться в разных жизненных ситуациях, например, для быстрой оценки инвестиционных сделок, для подсчета площадей и объемов, а также во многих других случаях. Кроме того, умение считать квадраты в уме может служить демонстрацией ваших интеллектуальных способностей. В данной статье разобраны методики и алгоритмы, позволяющие научиться этому навыку.

    Квадрат суммы и квадрат разности

    Одним из самых простых способов возведения двузначных чисел в квадрат является методика, основанная на использовании формул квадрата суммы и квадрата разности:

    Для использования этого метода необходимо разложить двузначное число на сумму числа кратного 10 и числа меньше 10. Например:

    • 37 2 = (30+7) 2 = 30 2 + 2*30*7 + 7 2 = 900+420+49 = 1 369
    • 94 2 = (90+4) 2 = 90 2 + 2*90*4 + 4 2 = 8100+720+16 = 8 836

    Практически все методики возведения в квадрат (которые описаны ниже) основываются на формулах квадрата суммы и квадрата разности. Эти формулы позволили выделить ряд алгоритмов упрощающих возведение в квадрат в некоторых частных случаях.

    Квадрат близкий к известному квадрату

    Если число, возводимое в квадрат, находится близко к числу, квадрат которого мы знаем, можно использовать одну из четырех методик для упрощенного счета в уме:

    На 1 больше:

    Методика: к квадрату числа на единицу меньше прибавляем само число и число на единицу меньше.

    • 31 2 = 30 2 + 31 + 30 = 961
    • 16 2 = 15 2 + 15 + 16 = 225 + 31 = 256

    На 1 меньше:

    Методика: из квадрата числа на единицу больше вычитаем само число и число на единицу больше.

    • 19 2 = 20 2 - 19 - 20 = 400 - 39 = 361
    • 24 2 = 25 2 - 24 - 25 = 625 - 25 - 24 = 576

    На 2 больше

    Методика: к квадрату числа на 2 меньше прибавляем удвоенную сумму самого числа и числа на 2 меньше.

    • 22 2 = 20 2 + 2*(20+22) = 400 + 84 = 484
    • 27 2 = 25 2 + 2*(25+27) = 625 + 104 = 729

    На 2 меньше

    Методика: из квадрата числа на 2 больше вычитаем удвоенную сумму самого числа и числа на 2 больше.

    • 48 2 = 50 2 - 2*(50+48) = 2500 - 196 = 2 304
    • 98 2 = 100 2 - 2*(100+98) = 10 000 - 396 = 9 604

    Все эти методики можно легко доказать, выведя алгоритмы из формул квадрата суммы и квадрата разности (о которых сказано выше).

    Квадрат чисел, заканчивающихся на 5

    Чтобы возвести в квадрат числа, заканчивающиеся на 5. Алгоритм прост. Число до последней пятерки, умножаем на это же число плюс единица. К оставшемуся числу приписываем 25.

    • 15 2 = (1*(1+1)) 25 = 225
    • 25 2 = (2*(2+1)) 25 = 625
    • 85 2 = (8*(8+1)) 25 = 7 225

    Это верно и для более сложных примеров:

    • 155 2 = (15*(15+1)) 25 = (15*16)25 = 24 025

    Квадрат чисел близких к 50

    Считать квадрат чисел, которые находятся в диапазоне от 40 до 60 , можно очень простым способом. Алгоритм таков: к 25 прибавляем (или вычитаем) столько, насколько число больше (или меньше) 50. Умножаем эту сумму (или разность) на 100. К этому произведению добавляем квадрат разности числа, возводимого в квадрат, и пятидесяти. Посмотрите работу алгоритма на примерах:

    • 44 2 = (25-6)*100 + 6 2 = 1900 + 36 = 1936
    • 53 2 = (25+3)*100 + 3 2 = 2800 + 9 = 2809

    Квадрат трехзначных чисел

    Возведение в квадрат трехзначных чисел может быть осуществлено при помощи одной из формул сокращенного умножения:

    Нельзя сказать, что этот способ является удобным для устного счета, но в особо сложных случаях его можно взять на вооружение:

    436 2 = (400+30+6) 2 = 400 2 + 30 2 + 6 2 + 2*400*30 + 2*400*6 + 2*30*6 = 160 000 + 900 + 36 + 24 000 + 4 800 + 360 = 190 096

    Тренировка

    Если вы хотите прокачать свои умения по теме данного урока, можете использовать следующую игру. На получаемые вами баллы влияет правильность ваших ответов и затраченное на прохождение время. Обратите внимание, что числа каждый раз разные.

    Рассмотрим теперь возведение в квадрат двучлена и, применяясь к арифметической точке зрения, будем говорить о квадрате суммы, т. е. (a + b)² и о квадрате разности двух чисел, т. е. (a – b)².

    Так как (a + b)² = (a + b) ∙ (a + b),

    то найдем: (a + b) ∙ (a + b) = a² + ab + ab + b² = a² + 2ab + b², т. е.

    (a + b)² = a² + 2ab + b²

    Этот результат полезно запомнить и в виде вышеописанного равенства и словами: квадрат суммы двух чисел равен квадрату первого числа плюс произведение двойки на первое число и на второе число, плюс квадрат второго числа.

    Зная этот результат, мы можем сразу написать, напр.:

    (x + y)² = x² + 2xy + y²
    (3ab + 1)² = 9a² b² + 6ab + 1

    (x n + 4x)² = x 2n + 8x n+1 + 16x 2

    Разберем второй из этих примеров. Нам требуется возвести в квадрат сумму двух чисел: первое число есть 3ab, второе 1. Должно получиться: 1) квадрат первого числа, т. е. (3ab)², что равно 9a²b²; 2) произведение двойки на первое число и на второе, т. е. 2 ∙ 3ab ∙ 1 = 6ab; 3) квадрат 2-го числа, т. е. 1² = 1 – все эти три члена должно сложить между собою.

    Совершенно также получим формулу для возведения в квадрат разности двух чисел, т. е. для (a – b)²:

    (a – b)² = (a – b) (a – b) = a² – ab – ab + b² = a² – 2ab + b².

    (a – b)² = a² – 2ab + b² ,

    т. е. квадрат разности двух чисел равен квадрату первого числа, минус произведение двойки на первое число и на второе, плюс квадрат второго числа .

    Зная этот результат, мы можем сразу выполнять возведение в квадрат двучленов, представляющих с точки зрения арифметики разность двух чисел.

    (m – n)² = m² – 2mn + n²
    (5ab 3 – 3a 2 b) 2 = 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2

    (a n-1 – a) 2 = a 2n-2 – 2a n + a 2 и т. п.

    Поясним 2-ой пример. Здесь мы имеем в скобках разность двух чисел: первое число 5ab 3 и второе число 3a 2 b. В результате должно получиться: 1) квадрат первого числа, т. е. (5ab 3) 2 = 25a 2 b 6 , 2) произведение двойки на 1-ое и на 2-ое число, т. е. 2 ∙ 5ab 3 ∙ 3a 2 b = 30a 3 b 4 и 3) квадрат второго числа, т. е. (3a 2 b) 2 = 9a 4 b 2 ; первый и третий члены надо взять с плюсом, а 2-ой с минусом, получим 25a 2 b 6 – 30a 3 b 4 + 9a 4 b 2 . В пояснение 4-го примера заметим лишь, что 1) (a n-1)2 = a 2n-2 … надо показателя степени умножить на 2 и 2) произведение двойки на 1-ое число и на 2-ое = 2 ∙ a n-1 ∙ a = 2a n .

    Если встать на точку зрения алгебры, то оба равенства: 1) (a + b)² = a² + 2ab + b² и 2) (a – b)² = a² – 2ab + b² выражают одно и тоже, а именно: квадрат двучлена равен квадрату первого члена, плюс произведение числа (+2) на первый член и на второй, плюс квадрат второго члена. Это ясно, потому что наши равенства можно переписать в виде:

    1) (a + b)² = (+a)² + (+2) ∙ (+a) (+b) + (+b)²
    2) (a – b)² = (+a)² + (+2) ∙ (+a) (–b) + (–b)²

    В некоторых случаях так именно и удобно толковать полученные равенства:

    (–4a – 3b)² = (–4a)² + (+2) (–4a) (–3b) + (–3b)²

    Здесь возводится в квадрат двучлен, первый член которого = –4a и второй = –3b. Далее мы получим (–4a)² = 16a², (+2) (–4a) (–3b) = +24ab, (–3b)² = 9b² и окончательно:

    (–4a – 3b)² = 6a² + 24ab + 9b²

    Возможно было бы также получить и запомнить формулу для возведения в квадрат трехчлена, четырехчлена и вообще любого многочлена. Однако, мы этого делать не будем, ибо применять эти формулы приходится редко, а если понадобится какой-либо многочлен (кроме двучлена) возвести в квадрат, то станем сводить дело к умножению. Например:

    31. Применим полученные 3 равенства, а именно:

    (a + b) (a – b) = a² – b²
    (a + b)² = a² + 2ab + b²
    (a – b)² = a² – 2ab + b²

    к арифметике.

    Пусть надо 41 ∙ 39. Тогда мы можем это представить в виде (40 + 1) (40 – 1) и свести дело к первому равенству – получим 40² – 1 или 1600 – 1 = 1599. Благодаря этому, легко выполнять в уме умножения вроде 21 ∙ 19; 22 ∙ 18; 31 ∙ 29; 32 ∙ 28; 71 ∙ 69 и т. д.

    Пусть надо 41 ∙ 41; это все равно, что 41² или (40 + 1)² = 1600 + 80 + 1 = 1681. Также 35 ∙ 35 = 35² = (30 + 5)² = 900 + 300 + 25 = 1225. Если надо 37 ∙ 37, то это равно (40 – 3)² = 1600 – 240 + 9 = 1369. Подобные умножения (или возведение в квадрат двузначных чисел) легко выполнять, при некотором навыке, в уме.


    Возведение в квадрат трехзначных чисел - впечатляющее проявление искусности в ментальном фокусничестве. Так же как при возведении в квадрат двузначного числа выполняется его округление в большую или меньшую сторону для получения кратного 10, для возведения трехзначного числа в квадрат его нужно округлить в большую или меньшую сторону для получения кратного 100. Возведем в квадрат число 193.

    Путем ок ругления 193 до 200 (второй сомножитель стал равным 186) задача типа «3 на 3» преобразовалась в более простую типа «3 на 1», так как 200 х 186 - это всего лишь 2 х 186 = 372 с двумя нулями в конце. Почти готово! Теперь все, что нужно сделать, это прибавить 7 2 = 49 и получить ответ - 37 249.

    Попробуем возвести в квадрат 706.




    При округлении числа 706 до 700 необходимо еще и изменить это же число на 6 в большую сторону для получения 712.

    Так как 712 х 7 = 4984 (простая задача типа «3 на 1»), 712 х 700 = = 498 400. Прибавив 6 2 = 36, получаем 498 436.

    Последние примеры не так уж страшны, потому что не включают в себя сложения как такового. Кроме того, вы наизусть знаете, чему равняются 6 2 и 7 2 . Возводить в квадрат число, которое отстоит от кратного 100 больше чем на 10 единиц, значительно труднее. Попробуйте свои силы с 314 2 .


    В этом примере число 314 уменьшилось на 14 ради округления до 300 и увеличилось на 14 до 328. Умножаем 328 х 3 = 984 и добавляем два нуля в конце, чтобы получить 98 400. Затем прибавляем квадрат 14. Если вам мгновенно приходит на ум (благодаря памяти или быстрым вычислениям), что 14 2 = 196, то вы в хорошей форме. Далее просто сложите 98 400 + 196 для получения окончательного ответа 98 596.

    Если вам нужно время для подсчета 14 2 , повторите «98 400» несколько раз, прежде чем продолжить. Иначе можно вычислить 14 2 = 196 и забыть, к какому числу нужно прибавить произведение.




    Если у вас есть аудитория, которую вы хотели бы впечатлить, можете произнести вслух «279 000», прежде чем найдете 292. Но такое не пройдет в случае каждой решаемой задачи.

    Например, попытайтесь возвести в квадрат 636.




    Теперь ваш мозг по-настоящему заработал, не правда ли?

    Не забывайте повторять «403 200» самому себе несколько раз, пока будете возводить в квадрат привычным способом 36, чтобы получить 1296. Самое сложное - суммировать 1296 + 403 200. Делайте это по одной цифре за раз, слева направо, и получите ответ 404 496. Даю слово, что, как только вы лучше ознакомитесь с возведением в квадрат двузначных чисел, задачки с трехзначными значительно упростятся.

    Вот еще более сложный пример: 863 2 .



    Первая проблема - надо решить, какие числа перемножать. Несомненно, одно из них будет 900, а другое - больше 800. Но какое именно? Это можно рассчитать двумя способами.

    1. Сложный способ: разность между 863 и 900 составляет 37 (дополнение для 63), вычитаем 37 из 863 и получаем 826.

    2. Легкий способ: удваиваем число 63, получаем 126, теперь последние две цифры этого числа прибавляем к числу 800, что в итоге даст 826.

    Вот как работает легкий способ. Поскольку оба числа имеют одинаковую разность с числом 863, их сумма должна равняться удвоенному числу 863, то есть 1726. Одно из чисел 900, значит, другое будет равно 826.

    Затем проводим следующие вычисления.




    Если вам трудно вспомнить число 743 400 после возведения в квадрат числа 37, не расстраивайтесь. В следующих главах вы узнаете систему мнемотехники и научитесь запоминать такие числа.

    Попробуйте свои силы на самой трудной пока задаче - на возведении в квадрат числа 359.




    Для получения 318 либо отнимите 41 (дополнение для 59) от 359, либо умножьте 2 х 59 = 118 и используйте последние две цифры. Далее умножьте 400 х 318 = 127 200. Прибавление к этому числу 412 = 1681 даст в сумме 128 881. Вот и все! Если вы сделали все правильно с первого раза, вы молодец!

    Завершим этот раздел большой, но легкой задачей: вычислим 987 2 .




    УПРАЖНЕНИЕ: ВОЗВЕДЕНИЕ В КВАДРАТ ТРЕХЗНАЧНЫХ ЧИСЕЛ

    1. 409 2 2. 805 2 3. 217 2 4. 896 2

    5. 345 2 6. 346 2 6. 276 2 8. 682 2

    9. 413 2 10. 781 2 11. 975 2

    Что за дверью номер 1?

    Математической банальностью 1991 года, которая поставила всех в тупик, оказалась статья Мэрилин Савант - женщины с самым высоким в мире IQ (что зарегистрировано в Книге рекордов Гиннесса) - в журнале Parade. Этот парадокс стал известен как «проблема Монти Холла», и заключается он в следующем.

    Вы участник шоу Монти Холла «Давайте совершать сделки» (Let’s Make a Deal). Ведущий дает вам возможность выбрать одну из трех дверей, за одной из которых находится большой приз, за двумя другими - козы. Допустим, вы выбираете дверь № 2. Но прежде чем показать, что скрывается за этой дверью, Монти открывает дверь № 3. Там коза. Теперь в своей дразнящей манере Монти спрашивает вас: вы хотите открыть дверь № 2 или рискнете посмотреть, что находится за дверью № 1? Что вам следует сделать? Если предположить, что Монти собирается подсказать вам, где нет главного приза, то он всегда будет открывать одну из «утешительных» дверей. Это оставляет вас перед выбором: одна дверь с большим призом, а вторая - с утешительным. Сейчас ваши шансы составляют 50 на 50, не так ли?

    А вот и нет! Шанс, что вы правильно выбрали в первый раз, по-прежнему 1 к 3. Вероятность того, что большой приз окажется за другой дверью, увеличивается до 2/3, потому что вероятности в сумме должны давать 1.

    Таким образом, изменив свой выбор, вы удвоите шансы на выигрыш! (В задаче предполагается, что Монти всегда будет давать игроку возможность сделать новый выбор, показывая «невыигрышную» дверь, и, когда ваш первый выбор окажется правильным, откроет «невыигрышную» дверь наугад.) Поразмышляйте об игре с десятью дверями. Пусть после вашего первого выбора ведущий откроет восемь «невыигрышных» дверей. Здесь ваши инстинкты, скорее всего, потребуют поменять дверь. Люди обычно ошибаются, думая, что если Монти Холл не знает, где главный приз, и открывает дверь № 3, за которой оказывается коза (хотя мог бы быть и приз), то дверь № 1 с вероятностью в 50 процентов будет нужной. Такое рассуждение противоречит здравому смыслу, тем не менее Мэрилин Савант получила груды писем (многие от ученых, и даже математиков), в которых говорилось, что ей не следовало писать о математике. Конечно, все эти люди были неправы.

    Сегодня мы научимся быстро без калькулятора возводить большие выражения в квадрат. Под большими я подразумеваю числа в пределах от десяти до ста. Большие выражения крайне редко встречаются в настоящих задачах, а значения меньше десяти вы и так умеете считать, потому что это обычная таблица умножения. Материал сегодняшнего урока будет полезен достаточно опытным ученикам, потому что начинающие ученики просто не оценят скорость и эффективность этого приема.

    Для начала давайте разберемся вообще, о чем идет речь. Предлагаю для примера сделать возведение произвольного числового выражения, как мы обычно это делаем. Скажем, 34. Возводим его, умножив само на себя столбиком:

    \[{{34}^{2}}=\times \frac{34}{\frac{34}{+\frac{136}{\frac{102}{1156}}}}\]

    1156 — это и есть квадрат 34.

    Проблему данного способа можно описать двумя пунктами:

    1) он требует письменного оформления;

    2) в процессе вычисления очень легко допустить ошибку.

    Сегодня мы научимся быстрому умножению без калькулятора, устно и практически без ошибок.

    Итак, приступим. Для работы нам потребуется формула квадрата суммы и разности. Давайте запишем их:

    \[{{(a+b)}^{2}}={{a}^{2}}+2ab+{{b}^{2}}\]

    \[{{(a-b)}^{2}}={{a}^{2}}-2ab+{{b}^{2}}\]

    Что нам это дает? Дело в том, что любое значение в пределах от 10 до 100 представимо в виде числа $a$, которое делится на 10, и числа $b$, которое является остатком от деления на 10.

    Например, 28 можно представить в следующем виде:

    \[\begin{align}& {{28}^{2}} \\& 20+8 \\& 30-2 \\\end{align}\]

    Аналогично представляем оставшиеся примеры:

    \[\begin{align}& {{51}^{2}} \\& 50+1 \\& 60-9 \\\end{align}\]

    \[\begin{align}& {{42}^{2}} \\& 40+2 \\& 50-8 \\\end{align}\]

    \[\begin{align}& {{77}^{2}} \\& 70+7 \\& 80-3 \\\end{align}\]

    \[\begin{align}& {{21}^{2}} \\& 20+1 \\& 30-9 \\\end{align}\]

    \[\begin{align}& {{26}^{2}} \\& 20+6 \\& 30-4 \\\end{align}\]

    \[\begin{align}& {{39}^{2}} \\& 30+9 \\& 40-1 \\\end{align}\]

    \[\begin{align}& {{81}^{2}} \\& 80+1 \\& 90-9 \\\end{align}\]

    Что дает нам такое представление? Дело в том, что при сумме или разности, мы можем применить вышеописанные выкладки. Разумеется, чтобы сократить вычисления, для каждого из элементов следует выбрать выражение с наименьшим вторым слагаемым. Например, из вариантов $20+8$ и $30-2$ следует выбрать вариант $30-2$.

    Аналогично выбираем варианты и для остальных примеров:

    \[\begin{align}& {{28}^{2}} \\& 30-2 \\\end{align}\]

    \[\begin{align}& {{51}^{2}} \\& 50+1 \\\end{align}\]

    \[\begin{align}& {{42}^{2}} \\& 40+2 \\\end{align}\]

    \[\begin{align}& {{77}^{2}} \\& 80-3 \\\end{align}\]

    \[\begin{align}& {{21}^{2}} \\& 20+1 \\\end{align}\]

    \[\begin{align}& {{26}^{2}} \\& 30-4 \\\end{align}\]

    \[\begin{align}& {{39}^{2}} \\& 40-1 \\\end{align}\]

    \[\begin{align}& {{81}^{2}} \\& 80+1 \\\end{align}\]

    Почему следует стремиться к уменьшению второго слагаемого при быстром умножении? Все дело в исходных выкладках квадрата суммы и разности. Дело в том, что слагаемое $2ab$ с плюсом или с минусом труднее всего считается при решении настоящих задач. И если множитель $a$, кратный 10, всегда перемножается легко, то вот с множителем $b$, который является числом в пределах от одного до десяти, у многих учеников регулярно возникают затруднения.

    \[{{28}^{2}}={{(30-2)}^{2}}=200-120+4=784\]

    \[{{51}^{2}}={{(50+1)}^{2}}=2500+100+1=2601\]

    \[{{42}^{2}}={{(40+2)}^{2}}=1600+160+4=1764\]

    \[{{77}^{2}}={{(80-3)}^{2}}=6400-480+9=5929\]

    \[{{21}^{2}}={{(20+1)}^{2}}=400+40+1=441\]

    \[{{26}^{2}}={{(30-4)}^{2}}=900-240+16=676\]

    \[{{39}^{2}}={{(40-1)}^{2}}=1600-80+1=1521\]

    \[{{81}^{2}}={{(80+1)}^{2}}=6400+160+1=6561\]

    Вот так за три минуты мы сделали умножение восьми примеров. Это меньше 25 секунд на каждое выражение. В реальности после небольшой тренировки вы будете считать еще быстрее. На подсчет любого двухзначного выражения у вас будет уходить не более пяти-шести секунд.

    Но и это еще не все. Для тех, кому показанный прием кажется недостаточно быстрым и недостаточно крутым, предлагаю еще более быстрый способ умножения, который однако работает не для всех заданий, а лишь для тех, которые на единицу отличаются от кратных 10. В нашем уроке таких значений четыре: 51, 21, 81 и 39.

    Казалось бы, куда уж быстрее, мы и так считаем их буквально в пару строчек. Но, на самом деле, ускориться можно, и делается это следующим образом. Записываем значение, кратное десяти, которое наиболее близкое нужному. Например, возьмем 51. Поэтому для начала возведем пятьдесят:

    \[{{50}^{2}}=2500\]

    Значения, кратные десяти, поддаются возведению в квадрат намного проще. А теперь к исходному выражению просто добавляем пятьдесят и 51. Ответ получится тот же самый:

    \[{{51}^{2}}=2500+50+51=2601\]

    И так со всеми числами, отличающимися на единицу.

    Если значение, которое мы ищем, больше, чем то, которое мы считаем, то к полученному квадрату мы прибавляем числа. Если же искомое число меньше, как в случае с 39, то при выполнении действия, из квадрата нужно вычесть значение. Давайте потренируемся без использования калькулятора:

    \[{{21}^{2}}=400+20+21=441\]

    \[{{39}^{2}}=1600-40-39=1521\]

    \[{{81}^{2}}=6400+80+81=6561\]

    Как видите, во всех случаях ответы получаются одинаковыми. Более того, данный прием применим к любым смежным значениям. Например:

    \[\begin{align}& {{26}^{2}}=625+25+26=676 \\& 26=25+1 \\\end{align}\]

    При этом нам совсем не нужно вспоминать выкладки квадратов суммы и разности и использовать калькулятор. Скорость работы выше всяких похвал. Поэтому запоминайте, тренируйтесь и используйте на практике.

    Ключевые моменты

    С помощью этого приема вы сможете легко делать умножение любых натуральных чисел в пределах от 10 до 100. Причем все расчеты выполняются устно, без калькулятора и даже без бумаги!

    Для начала запомните квадраты значений, кратных 10:

    \[\begin{align}& {{10}^{2}}=100,{{20}^{2}}=400,{{30}^{2}}=900,..., \\& {{80}^{2}}=6400,{{90}^{2}}=8100. \\\end{align}\]

    \[\begin{align}& {{34}^{2}}={{(30+4)}^{2}}={{30}^{2}}+2\cdot 30\cdot 4+{{4}^{2}}= \\& =900+240+16=1156; \\\end{align}\]

    \[\begin{align}& {{27}^{2}}={{(30-3)}^{2}}={{30}^{2}}-2\cdot 30\cdot 3+{{3}^{2}}= \\& =900-180+9=729. \\\end{align}\]

    Как считать еще быстрее

    Но это еще не все! С помощью данных выражений моментально можно сделать возведение в квадрат чисел, «смежных» с опорными. Например, мы знаем 152 (опорное значение), а надо найти 142 (смежное число, которое на единицу меньше опорного). Давайте запишем:

    \[\begin{align}& {{14}^{2}}={{15}^{2}}-14-15= \\& =225-29=196. \\\end{align}\]

    Обратите внимание: никакой мистики! Квадраты чисел, отличающиеся на 1, действительно получаются из умножения самих на себя опорных чисел, если вычесть или добавить два значения:

    \[\begin{align}& {{31}^{2}}={{30}^{2}}+30+31= \\& =900+61=961. \\\end{align}\]

    Почему так происходит? Давайте запишем формулу квадрата суммы (и разности). Пусть $n$ — наше опорное значение. Тогда они считаются так:

    \[\begin{align}& {{(n-1)}^{2}}=(n-1)(n-1)= \\& =(n-1)\cdot n-(n-1)= \\& =={{n}^{2}}-n-(n-1) \\\end{align}\]

    — это и есть формула.

    \[\begin{align}& {{(n+1)}^{2}}=(n+1)(n+1)= \\& =(n+1)\cdot n+(n+1)= \\& ={{n}^{2}}+n+(n+1) \\\end{align}\]

    — аналогичная формула для чисел, больших на 1.

    Надеюсь, данный прием сэкономит вам время на всех ответственных контрольных и экзаменах по математике. А у меня на этом все. До встречи!



    error: Контент защищен !!