Роботы в медицине на английском. Научная робототехника

Казанский Государственный

Технологический Университет

Реферат на тему:

Робототехника в медицине

Выполнил студент группы

Нигматуллин А.Р.

Казань 2010.


Вступление

1. Виды медицинских роботов

Заключение


Вступление

В эпоху бурного развития науки и техники появляется множество различных нововведений в самых различных областях. Прилавки супермаркетов заполняются экзотической пищей, в торговых комплексах появляются одежды из новейших материалов, а в гипермаркетах электроники и того дальше, невозможно угнаться за развитием новых изобретений. Все привычное старое стремительно сменяется на необыкновенное, новое, к которому так не просто привыкнуть. Но если бы не было прогресса, то люди не познали бы множества загадок, которые еще не раскрыты, и природа тщательно скрывает их от нас. Несмотря на все это, благодарю высокой профессиональности современных ученых физиков, безостановочно ведутся разработки в различных сферах. Простой человек вряд ли озадачивался вопросом что же нового можно внести в этот и без того безгранично цивилизованный и прогрессивный мир. Для примера можно рассмотреть наш мир, каким он был даже одну сотню лет назад. Не было не телевизоров, не компьютеров, не бытовой техник, без которой современному человеку в быту просто не обойтисьли даже 10 лет назад, когда сотовые телефоны только –только вышли в свет и были громоздкими и очень малофункциональными, что касается и компьютерной техники. Наука движет мир вперед, и в любых областях жизнедеятельности человека нужны какие – либо нововведения. В данном пример хотелось бы выбрать как определенный аспект – область медицины, а точнее ее технического потенциала. Медицина так же не стоит на месте, появляются новее сложнейшие аппараты, для жизнеобеспечения человека, примером тому могут стать множество аппаратов, например аппарат для искусственной вентиляции легких, либо аппарат искусственной почки и т.п. Появились миниатюрные измерители сахара в крови, электронные измерители пульса и давления, этот список можно дополнить неоднократно. Конкретнее хочется остановиться на примере внедрения робототехники в медицинскую отрасль. Различные роботы создаются человеком примерно с конца 20 –ого века, за пройденное время они были значительно улучшены и модернизированы. На данный момент существуют роботы – помощники, военные разработки роботов, космические, бытовые и конечно медицинские. Далее стоит подробнее разобрать какие виды роботов и для какого применения существуют на данный момент времени.


Виды медицинских роботов

Один из наиболее известных и прославленных достижений последнего времени стал робот по названием «Да Винчи», который, как можно догадаться был назван в честь великого инженера, художника и ученого Леонардо Да Винчи. Новинка позволяет хирургам выполнять самые сложные операции, не касаясь пациента и с минимальным повреждением его тканей. Робот, который может применяться в кардиологии, гинекологии, урологии и общей хирургии, был продемонстрирован медицинским центром и отделением хирургии университета штата Аризона.

Во время операции с “да Винчи” хирург находится за пару метров от операционного стола за компьютером, на мониторе которого представлено трехмерное изображение оперируемого органа. Врач управляет тонкими хирургическими инструментами, проникающими в тело пациента сквозь небольшие отверстия. Такие инструменты с дистанционным управлением можно использовать для точных операций на небольших и труднодоступных участках тела.

Доказательством необычайных возможностей “да Винчи” стал первый в мире полностью эндоскопический байпас, выполненный совсем недавно в Колумбийском Пресвитерианском медицинском центре в Нью-Йорке. Уникальную операцию провели директор центра по роботизированной кардиохирургии Майкл Аргензиано, и заведующий отделом кардиоторакальной хирургии доктор Крейг Смит. При этом они использовали всего лишь три небольших отверстия - два для манипуляторов и одно - для видеокамеры. Понять, что это значит, может только человек, хоть раз наблюдавший “традиционную” операцию на открытом сердце.

Действия бригады, “открывающей” грудную клетку пациента, производят на новичка (по журналистскому заданию мне как-то пришлось побывать в этой роли) неизгладимое впечатление. До сих пор помню мурашки по всему телу от жуткого визга разрезающей грудину дисковой пилы и огромную рану, в которой деловито сновали руки в окровавленных резиновых перчатках.

В Соединенных Штатахбайпасили аортокоронарное шунтирование является самой распространенной операцией на открытом сердце. Ежегодно эту процедуру проходят здесь 375 тысяч человек. Широкое внедрение “да Винчи” могло бы значительно облегчить их судьбу, помогая пациентам быстрее поправляться после операции и раньше выписываться из госпиталей.

Главный хирург аризонского центра, где испытывают “да Винчи”, доктор Алан Гамильтон вообще уверен в том, что роботостроение произведет революцию в хирургии. Пока что эта революция только начинается, а вот в... кино “да Винчи” уже произвел изрядный фурор. Хирургический робот сыграл роль в последнем кинофильме сериала о Джеймсе Бонде “Умри в другой день” (Die Another Day).

В начале фильма крупным планом показываются три механические руки, шарящие по телу захваченного врагами агента 007. “Хирурги и шпионы похожи друг на друга, поскольку они стремятся выполнить свои задачи без излишней суеты и с использованием новейших технологий, - сказал представитель лондонского Имперского колледжа, где трудится сейчас “да Винчи”. - Фильмы о Джеймсе Бонде всегда восхищали меня демонстрацией невиданных технических новинок. Но я никогда не думал, что когда-нибудь отдел, который я возглавляю, будет сотрудничать с производителями бондианы”.

“Да Винчи” - лишь один из примеров развития новой отрасли в медицине.

Другие роботы применяются в самых различных операциях, вплоть до хирургии головного мозга. Пока что эти устройства достаточно громоздки, но врачи надеются на появление и миниатюрных помощников. Прошлым летом, например, отдел энергетики американской Национальной лаборатории Sandia в Альбукерке уже построил самый маленький в мире робот высотой в один сантиметр. А британская корпорация Nanotechnology Development разрабатывает крошку Fractal Surgeon, который будет самостоятельно собираться из еще меньших блоков внутри человеческого тела, проводить там необходимые действия и саморазбираться.

Теперь же робота оснастили самыми продвинутыми "глазами" в мире(о чём свидетельствуетпресс-релизкомпании). Трёхмерное зрение было у него и раньше, а вот высокой чёткости добились только сейчас.

Новая версия позволяет следить за операцией сразу двум хирургам.Один из них может как ассистировать, так и учиться мастерству у старших коллег. На рабочем дисплее может быть отображена не только картинка с камер, но и два дополнительных параметра, например данные ультразвука и ЭКГ.

Многорукий da Vinci позволяет оперировать с большой точностью, а значит, и с минимальным вмешательством в организм пациента. В результате восстановление после операции происходит быстрее, чем обычно (фото 2009 Intuitive Surgical)

Еще одна интересная новость. Сотрудники Университета Вандербильта (США) выступили с концепцией новой автоматической когнитивной системы TriageBot. Машины будут собирать медицинскую информацию, осуществлять основные диагностические измерения и в конечном итоге ставить предварительные диагнозы, пока люди занимаются более неотложными проблемами. В результате пациенты будут меньше ждать, а специалисты вздохнут свободнее и существенно снизят количество ошибок.«Последние достижения в области дизайна гуманоидных роботов, сенсорных технологий и архитектуры когнитивного контроля сделали такую систему возможной», - подчёркивает соавтор проекта Митч Уилкс.В США около 40% пациентов отделений экстренной помощи поступают туда в состоянии, опасном для жизни. Врачам приходится уделять им первоочередное внимание. Роботы могли бы заняться остальными 60%.Если проект окажется успешным, через пять лет возле стойки регистрации появятся электронные терминалы, подобные тем, что установлены в аэропортах, а также специальные «умные» стулья и мобильные роботы.При поступлении пациент должен прежде всего зарегистрироваться. В предлагаемой системе сопровождающее лицо сможет внести все необходимые данные через терминал с сенсорным экраном. Возможны голосовые подсказки. При этом автомат сможет распознавать наличие критической информации (например, острая боль в груди) и информировать о ней врача, чтобы пациентом занялись как можно скорее. В противном случае больного направят в зал ожидания.План более подробной диагностики пациента разрабатывается в соответствии с этими первоначальными сведениями. В предлагаемой системе простейшие процедуры можно проделать уже в приёмной, на специальном стуле, который измерит кровяное давление, пульс, насыщение крови кислородом, частоту дыхания, высоту и вес.Кроме того, мобильные помощники будут периодически проверять состояние пациентов в зале ожидания, уделяя особое внимание артериальному давлению, частоте пульса и, возможно, интенсивности болевых ощущений. В случае обнаружения критических изменений робот обязан проинформировать человеческий персонал.Последний элемент системы TriageBot - это администратор, который следит за машинами, обеспечивает связь с больничной базой данных и служит посредником между автоматикой и медиками.Планируется провести ряд исследований, в ходе которых будет определён точный набор функций роботов и их внешний вид. Параллельно разрабатываются прототипы.

Для более точных и удобных расчетов ученые создали чудного робота –фармацевта. Электронно-механическое чудо, работающее в большом подвале Пресвитерианской больницы в городе Альбукерке, штат Нью-Мексико, зовут Рози. “Родитель” этого мощного механического агрегата, перемещающегося по четырехметровому рельсу в темной застекленной комнате, - новое подразделение корпорации Intel - Intel Community Solutions, использующее достижения фирмы для решения социальных задач.

Задача Рози, - приготовление и распределение лекарств сотен наименований. Работает он круглосуточно, практически не делает перерывов и при этом совершенно не ошибается. За два с половиной года службы в больничной аптеке не было ни одного случая, когда бы пациенту отправили не то лекарство. Коэффициент точности работы Рози - 99,7 процентов, а это значит, что сортировка и дозировка прописанных препаратов никогда не отличается от тех, что указаны в рецептах врачей.

Более того, Рози помог своевременно обнаружить множество ошибок. Рози никогда не отправит больному лекарство с истекшим сроком годности. Залогом его точности являются заложенные в электронный мозг машины государственные стандарты контроля качества. Между тем, согласно данным Национального института здоровья в Вашингтоне из-за ошибок с лекарствами в стране ежегодно умирают около 50 тысяч человек. Но приготовление и распределение лекарств - не единственная проблема, которую в Пресвитерианской больнице решили с помощью Рози. До его появления было очень сложно следить за отпуском наркотических средств: сотрудники тратили уйму времени, пересчитывая таблетки, чтобы ни одна из них не осталась неучтенной. Сегодня от этой рутинной работы их освободил робот Рози.

Но и это еще не все. Механической “рукой” скользящий по рельсу Рози собирает висящие вдоль стен маленькие пакетики с таблетками, на каждый из которых нанесен уникальный бар-код. Затем он вкладывает их в герметические конверты и отправляет пациентам.

На свет так же появились два робота помощника – это робот нянька, который ухаживает за больными людьми, в частности страдающими от болезни Альцгеймера, и робот физиотерапевт, позволяющий быстрее адаптироваться людям перенесшим инсульт.

Недавно американские пациенты с болезнью Альцгеймера получили помощника, который облегчает им общение с врачами и родственниками. Оборудованный камерой, экраном и всем необходимым для беспроводной связи через Интернет, робот Companion позволяет врачу контактировать с пациентом, который находится в специализированной клинике. Робот также используется для обучения персонала, помощи пациентам, имеющим проблемы с передвижением, общения пациентов с детьми. Как ни странно, пациенты, обычно неохотно принимающие все новое, отнеслись к механическому собеседнику совсем неплохо: показывали на него, смеялись, даже пытались заговаривать с ним.

По мнению исполнительного директора создавшей машину компании InTouch Health Юлина Ванга, применение роботов при уходе за престарелыми людьми может снять остроту проблемы старения нации. В условиях, когда уже к 2010 году число пенсионеров в стране возрастет до 40, а к 2030 - до 70 миллионов, это очень важно. Пока же фирма собирается сдавать своих роботов в аренду домам престарелых. В будущем компания планирует создание роботов, которые смогут приводить в движение инвалидную коляску.

Настоящий шаг в будущее сделали инженеры из Массачусетского технологического института, заменившие врача-физиотерапевта роботом. Как известно, люди, перенесшие инсульт, надолго забывают о своей привычной жизни. В течение многих месяцев и даже лет они вновь учатся ходить, держать ложку в руках, совершать те обыденные действия, о которых раньше даже не задумывались. Теперь им могут помочь не только врачи, но и роботы.

Речь идет о сеансах физиотерапии, необходимых для восстановления координации движений рук. Сейчас пациенты обычно занимаются с врачами, которые показывают им соответствующие упражнения. В отделения реабилитации Бостонского городского госпиталя, где проводятся испытания новой установки, выздоравливающему от инсульта предлагается с помощью джойстика перемещать на экране по заданной траектории небольшой курсор. Если же человек не может этого сделать, управляемый компьютером джойстик с помощью встроенных электромоторов сам переместит его руку в необходимое положение.

Врачи остались довольны работой новинки. В отличие от человека, робот может совершать одни и те же движения тысячи раз в день и при этом не уставать. Что касается самих врачей, то им не стоит бояться безработицы: просто вместо того, чтобы часами сидеть с больными, они смогут разрабатывать новые, более эффективные программы тренировок.

Так как медицина является довольно обширной областью науки, не обошлось здесь и без вмешательства современных нанотехнологий. Вот что можно отметить в этом разделе.

Беспорядочно мельтешащие под микроскопомбактериивнезапно замирают на месте. Затем, будто сговорившись, начинают выстраиваться в ровную линию. Микробы за считаные секунды занимают свои места в колонне, и тут в движение приходит весь строй -бактериикак по команде синхронно поворачиваются налево.

Движениями микробов действительно управляют. Этим занимается сидящий за пультом ученый - профессор Политехнической школы Монреаля Сильван Мартель. Созданная канадским ученым установка контролирует перемещениебактерийс помощью магнитного поля с точностью до тысячных долей миллиметра. Недавно исследователь показал свой прибор в действии. 5000бактерийсогласованно передвигали в капле воды микроскопические полимерные блоки и сложили из них миниатюрное строение.

Это только начало испытаний. В ближайшем будущем такую «рабочую силу» можно будет применить с большей пользой - в медицине. Уже много лет в лабораториях по всему миру пытаются создатьМИКРОРОБОТОВ, которые смогли бы выполнять различные операции внутри организма пациентов. Дальше простейшихпрототипову инженеров дело пока не пошло. Теперь ученые получили возможность пойти обходным путем - на смену сложным и неэффективным устройствам приходят микроорганизмы.

Возведенноебактериямистроение можно разглядеть только под микроскопом. Оно напоминает египетскую пирамиду. Сходство не случайно. «Пирамиды - один из первых шагов человека к созданию действительно сложных конструкций, - рассказывает Сильван Мартель. - Мы подумали, что будет символично, если микроорганизмы выполнят именно такое задание». Настоящие пирамиды сооружали многие годы.Бактерииуправились с моделью за 15 минут. Это, несмотря на то, что строительные блоки были куда крупнее самих «рабочих».

Микроорганизмы работали сообща. Под микроскопом 5000бактерийвыглядели как сплошное темное облако. Вот этот рой нависает над одним из «кирпичей». В следующую секунду микробы начинают медленно, но верно толкать блок на заданное в чертеже место. «Мы пока только обкатываемтехнологию, - говорит Мартель. - В принципе, все то же самое можно делать значительно быстрее».

Секрет успеха - в выдающихся способностях этих микроорганизмов. Канадские ученые используют в работебактерииMagnetospirillum magnetotacticum. «Оказалось, это настоящие рекордсмены, - объясняет Мартель. - Они движутся на порядок быстрее другихбактерий». Кроме того, эти микроорганизмы чувствительны к магнитным полям - они в больших количествах накапливают в себе соединения железа. Ученые пока не очень хорошо понимают, зачем это нужно самим микробам. Зато теперь понятно, как такую особенность может использовать человек. С помощью магнитного поля Мартель заставляетбактерииразворачиваться в нужную сторону. Дальше они двигаются самостоятельно - у них есть специальные жгутики, работающие, как гребные винты кораблей.

Они могут перемещаться не только в капле воды под микроскопом. Канадский ученый ввелбактериив кровь лабораторных крыс и с помощью магнитного поля заставил микробов маневрировать в сосудах. Оказалось, бактерии способны двигаться даже против течения. Правда, преодолевать поток им удавалось только в небольших капиллярах, где кровь циркулировала медленно. В крупных артериях «пловцов» безнадежно сносило - скорость жидкости там достигала нескольких десятков сантиметров в секунду. Размножаться в крови эти микробы не способны, поэтому на здоровье грызунов их присутствие не повлияло. Микроорганизмы некоторое время двигались по сосудам, а затем погибли.

Эффективности бактериальных двигателей позавидует любой инженер. «Главная проблема, о которую разбиваются попытки создать медицинскихМИКРОРОБОТОВ, - их габариты, - рассуждает Владимир Лобаскин, физик из Университетского колледжа Дублина. - Требования к размеру этих устройств таковы, что для них очень непросто создать достаточно мощный мотор». Сам Лобаскин занимается теоретическими расчетами эффективности как раз таких вот микроскопических двигателей. «Технические характеристики»бактерийМартеля произвели на физика большое впечатление: «Это практически готовая система для решения медицинских задач».

Похоже, разработчикам настоящихМИКРОРОБОТОВна это действительно нечем ответить. Один из самых последнихпрототиповбыл создан несколько лет назад в швейцарском Институтеробототехникии интеллектуальных систем. Он представляет собой крошечную металлическую спираль, которую можно разглядеть только под очень мощным микроскопом. Попав в переменное магнитное поле, она начинает вращаться и работать, как пропеллер. Направлением движения этого устройства тоже можно управлять с помощью магнитов.

Со временем разработчики рассчитывают использовать его для доставки лекарств в различные ткани человеческого организма. Пока получается не очень хорошо. Эти изделия примерно в десять раз медленнее «живыхроботов», с которыми работают в Канаде. О маневрах в кровеносных сосудах говорить даже не приходится. В этом нет ничего удивительного, уверен Мартель. За миллионы лет эволюция хорошо поработала надбактериями. Быстро создать такое же совершенное искусственное устройство будет очень непросто.

Именно поэтомубиотехнологииз корейского Национального университета Чуннам попробовали совместить в своей работе два противоположных подхода. Созданный имипрототипмедицинскогоМИКРОРОБОТАпостроен из синтетического полимера и клеток сердечной мышцы человека - кардиомиоцитов. Клетки натянуты на гибкий пластиковый каркас на специальных ножках. Сокращаясь, клетки приводят в движение всю конструкцию, и устройство начинает перебирать ногами. Разработчики предполагают, что в будущем подобныероботысмогут путешествовать по кровеносным сосудам человека, цепляясь за стенки. Функционировать такие изделия смогут очень долго - «клеточный двигатель» использует в качестве топлива растворенную в крови глюкозу.

«Всего несколько лет назад разговоры ороботах, доставляющих лекарства в определенные точки организма, казались фантазиями, - говорит Алексей Снежко, физик из Аргоннской национальной лаборатории (США). - Теперь понятно, что в самое ближайшее время их начнут испытывать на людях».

Как это будет выглядеть, понятно уже сейчас. В одном из последних опытов Сильван Мартель и его коллеги ввелибактериив организм больной раком крысы. А затем поместили ее в медицинский томограф. Эти приборы используют сильные магнитные поля для построения трехмерных карт организма пациента. После небольшой переделки установка превратилась в командный пункт для микробов. С ее помощью ученые провелибактериипо кровеносной системе грызуна прямо в район опухоли. Микроорганизмы доставили к пораженной области учебный груз - флуоресцирующее вещество. Вскоре Мартель планирует повторить эксперимент. На этот раз бактерии будут нести противоопухолевый препарат.

Так же нанотехнологи продемонстрировали довольно впечатляющие образцы электронной кожи. Электронная кожа впервые ощутила прикосновения бабочки

Решётка из тончайших полупроводниковых нитей, совмещённая с электродами и меняющей в ответна давление проводимость резиной типа PSR (вверху) превращена калифорнийскимиумельцами в "лоскут кожи" (внизу)(иллюстрации Kuniharu Takei et al./Nature Materials).

На этом рисунке кожи робота каждый чёрный квадратик соответствует одному "пикселю", элементарной точке, отвечающей за осязание (иллюстрация Ali Javey and Kuniharu Takei, UC Berkeley).Чувствительность кожи авторы рекламируют красочной фантазией: робот с такимманипулятором смог бы запросто обращаться с куриным яйцом, не уронив его и не раздавив (иллюстрация Ali Javey, Kuniharu Takei/UC Berkeley).

Ещё одна иллюстрация чувствительности стэнфордского сенсора: он регистрирует прикосновения перуанской бабочкиChorinea faunus(фото L.A. Cicero/Stanford University).

Уже немало копий сломано вокруг проблемы создания робототехнического аналога самого крупного органа человека. Главный вопрос – как воспроизвести невероятную чувствительность кожного покрова, который может ощутить дуновение ветерка от пролетевшего насекомого? Недавно две исследовательские группы из Калифорнии одновременно объявили о своих впечатляющих ответах.

Первая команда, из Калифорнийского университета в Беркли, выбрала в качестве ключевого элемента для своей искусственной кожи нанопроводки. Как сообщают учёные впресс-релизе, они вырастили крошечные германиевые и кремниевые нити на специальном барабане, а затем прокатили этим валиком по подложке – клейкойполиимиднойплёнке.

В итоге учёные получили эластичный материал, в структуру которого были включены нанопроводки, играющие роль транзисторов.

Поверх них исследователи нанесли изолирующий слой с периодическим рисунком из тонких отверстий, а ещё выше – чувствительную к прикосновению резину (PSR).Между резиной и нанопроводками при помощи фотолитографии навели проводящие мостики (для этого и понадобились отверстия в слое изолятора) и, наконец, сдобрили бутерброд тонкой алюминиевой плёнкой – финальным электродом. (Подробности авторы системы представили встатьев Nature Materials).Такой эластичный набор способен определять и точно локализовать участки, к которым прикладывается давление.Имя эта кожа получила банальное и предсказуемое - e-skin. Новая технология позволяет использовать в качестве подложки множество материалов, от пластика до резины, а также включать в её состав молекулы различных веществ, например, антибиотиков (что может оказаться весьма важным).На опытном куске e-skin размером 7 х 7 сантиметров уместилась матрица 19 х 18 пикселей. В каждом из которых содержались сотни наноштырей. Такая система оказалась способна регистрировать давление от 0 до 15 килопаскалей.Примерно такие уровни нагрузки испытывает человеческая кожа при печатании на клавиатуре или удерживании на весу небольшого объекта.

Али Джавей (Ali Javey), глава проекта e-skin в Беркли(фото UC Berkeley)

Учёные указывают на вполне определённое преимущество своей разработки перед аналогами. Большинство проектов такого рода полагается на гибкие органические материалы, которым для работы требуется высокое напряжение.

Синтетическая кожа из Беркли - первая, изготовленная на основе монокристаллических неорганических полупроводников. Она функционирует при напряжении всего в 5 вольт. Но что ещё интереснее - опыт показал, что e-skin выдерживает до 2000 изгибаний с радиусом 2,5 миллиметра без потери чувствительности.

В качестве очевидной области применения в будущем такой кожи можно предположить чувствительные манипуляторы,способные оперироватьхрупкими предметами.

Сверхаккуратную кибернетическую руку можно дополнительно оснастить датчиками тепла, радиоактивности, химических веществ, покрыть тонким слоем лекарств и использовать на "пальцах" роботов-хирургов или спасателей.

В последнем случае (при работе роботов с людьми) очень важным с точки зрения безопасности окажется тот факт, что электронная кожа из Беркли, как и человеческая, ощущает прикосновение почти мгновенно (в течение миллисекунд). В теории она может полностью покрывать манипулятор робота или даже всю машину.

Вверху: профессор Чжэнань Бао (Zhenan Bao) – лидер стэнфордского проекта.Внизу: такая простая полимерная плёнка с алюминиевыми проводниками послужила отправной точкой в построении новой кожи(фото L.A. Cicero/Stanford University, Stefan C. B. Mannsfeld et al./Nature Materials).

Вторая разработка, родом из Стэнфордского университета, использует другой подход. Как сообщают учёные впресс-релизе, они поместили между двумя электродами слой высокоэластичной формованной резины.

Такая плёнка накапливает электрические заряды подобно конденсатору. Давление сжимает резину – а это, в свою очередь, изменяет число электрических зарядов, которые способен хранить сандвич, что и определяет электроника благодаря набору электродов.

Описанный процесс позволяет обнаружить легчайшее прикосновение, что учёные доказали на опыте. Они использовали в качестве "тестера" мух.В ходе эксперимента квадратная матрица со стороной в семь сантиметров и в миллиметр толщиной чувствовала посадку насекомых, весящих всего 20 миллиграммов, и реагировала на их касания с высокой скоростью.

Под микроскопом матрица похожа на поле, усеянное остроконечными пирамидками. В таком материале пирамидок этих может быть от сотен тысяч до 25 миллионов на квадратный сантиметр, в зависимости от требуемого пространственного разрешения.

Такой приём (вместо применения сплошного слоя резины) был необходим, поскольку монолитный материал, как выяснилось, терял свои свойства при сдавливании – точность регистрации зарядов падала. А свободное пространство вокруг микроскопических пирамид позволяет им легко деформироваться и восстанавливать исходную форму после снятия нагрузки.

Гибкость и прочность стэнфордской электронной кожи оказались очень высоки. Её нельзя растягивать, но вполне можно сгибать, обернув ею, например, руку робота.

А потому в качестве сфер приложения своей разработки учёные видят опять же хирургических роботов. Но не только. Искусственная кожа могла бы стать основой электронных бинтов, - рассуждают американские исследователи, - способных подавать сигнал при слишком слабом или опасно сильном затягивании. А ещё подобные сенсоры могли бы точно фиксировать степень сжатия руками рулевого колеса, вовремя предупреждая водителя, что он засыпает.

Обе команды утверждают, что ещё продолжат развивать данное направление экспериментов. Так что роботы будущего, по всей видимости, всё же получат кожу, приближённую по возможностям к человеческой. И пусть внешне она будет заметно отличаться от нашей – её чувствительность придаст новый смысл понятию робот-андроид.

Сенсационное заявление дала компания по производству видеокарт для компьютеров. Не успели написать о первой хирургической операции, проведенной исключительно «руками» роботов, как NVIDIA приготовила другую «бомбу» из мира медицины. На калифорнийской конференции GTC 2010 производитель графических чипов озвучил весьма смелую идею – проводить операцию на сердце… без остановки сердца и вскрытия грудной клетки!

Робот-хирург будет производить операцию с помощью манипуляторов, подведенных к сердцу через небольшие отверстия в груди пациента. Технология визуализации «на лету» оцифровывает бьющееся сердце, демонстрируя хирургу трехмерную модель, по которой он может ориентироваться точно так же, как если бы смотрел на сердце через вскрытую грудную клетку.Основная сложность заключается в том, что сердце совершает большое количество движений за короткое время – но, по словам разработчиков, мощности современных вычислительных систем на базе графических процессоров NVIDIA хватит, чтобы визуализировать орган, синхронизируя движения инструментов робота с биением сердца. За счет этого создается эффект неподвижности – хирургу без разницы, «стоит» сердце или работает, ведь манипуляторы робота совершают аналогичные движения, компенсируя биение!

Пока вся информация об этой невероятной технологии состоит из коротенькой видеодемонстрации, но мы будем с нетерпением ожидать новых сведений от NVIDIA. Кто бы мог подумать, что совершить революцию в хирургии задумала компания-производитель видеокарт…

А Японские умельцы не перестают удивлять приятными новинками. Новый робот-медвежонок носит людей на руках

Японцы остановились на "благоприятном имидже плюшевого медвежонка", посчитав, что человекоподобный робот будет только пугать пациентов (фото RIKEN, Tokai Rubber Industries)

Японский институт физических и химических исследований (BMC RIKEN) и компанияTokai Rubber Industries(TRI)вчера представили "медвежеподобного" робота, предназначенного для оказания помощи медсёстрам в больницах. Новая машина буквально носит пациентов на руках.

RIBA (RobotforInteractiveBodyAssistance) - это усовершенствованная версия андроида RI-MAN.

<...> По сравнению с предшественником RIBA серьёзно продвинулся вперёд.

Как и RI-MAN, новичок способен аккуратно поднимать человека с кровати или инвалидного кресла, переносить его на руках, например в туалет, а потом доставлять обратно и так же бережно укладывать в постель или усаживать в коляску. Но если RI-MAN носил лишь зафиксированных в определённом положении кукол весом 18,5 кг,RIBA уже транспортирует живых людей массой до 61 кило.

Рост "медведя" 140 сантиметров (RI-MAN - 158 см), и весит он вместе с аккумуляторами 180 килограммов (предшественник - 100 кг). RIBA распознаёт лица и голоса, выполняет голосовые команды, ориентируется по собранным видео- и аудиоданным, которые обрабатывает в 15 быстрее, чем RI-MAN, и "гибко" реагирует на малейшие изменения в окружающей среде.

Руки нового робота имеют семь степеней свободы, голова - одну (позже будет три), в талии две степени.Корпус покрыт разработанным TRI новым мягким материалом наподобие полиуретановой пены. Двигатели работают довольно тихо (53,4 дБ), а всенаправленные колёса позволяет машине маневрировать в ограниченном пространстве.

Ну и само собой без протезирования в медицине никуда. Поэтому и здесь есть свои ученые и инженеры безустально разрабатывающие новые устройства. А именно Лаборатория прикладной физики им. Д. Хопкинса преподнесла новый сюрприз. В ходе совместной реализации проекта DARPA и Лаборатория прикладной физики им. Д. Хопкинса (Johns Hopkins Applied Physics Laboratory, APL) подготовили к началу тестирования с участием людей очередное поколение протеза руки, названное Modular Prosthetic Limb (MPL). По задумке разработчиков, искусственная конечность будет полностью управляться мозгом посредством вживленных в него сенсоров и даже обеспечивать тактильные ощущения за счет посылки электрических импульсов с внешних сенсоров в соответствующий участок коры головного мозга. В прошлом месяце APL заявила о заключении контракта на 34,5 млн долл. с DARPA, что должно позволить исследователям провести тестирование своей разработки на пяти особах в течение следующих двух лет.

Ожидается, что третья фаза тестирования – испытания с участием людей – позволит внести усовершенствования как в систему управления нейропротезом, так и в алгоритм генерации сигналов обратной связи. MPL, прошедший стадию многолетнего прототипирования, поддерживает 22 разновидности движений, независимое управление каждым пальцем и весит столько же, сколько и настоящая человеческая рука (около 4 килограммов). Исследователи планируют начать тестирование, оснастив протезом парализованного пациента. Реализованные до сих пор нейропротезы были рассчитаны на замену ампутированным конечностям, в то время как MPL позволяет охватить большее количество случаев, включая недуги, связанные с нарушениями нормальной деятельности спинного мозга, поскольку сигналы управления «снимаются» непосредственно с головного мозга.В ходе совершенствования разработки исследователям предстоит решить еще немалое количество затруднений и сложностей, как уже известных, так и тех, которые, несомненно, будут выявлены в процессе тестирования. Среди подобных проблем – малый срок жизни существующих на сегодняшний день нейроинтерфейсов. Внедренные в жидкие ткани организма кремниевые чипы достаточно интенсивно разрушаются, выходят из строя и нуждаются в замене приблизительно каждые два года. Ранее в этом году DARPA анонсировала программу Histology for Interface Stability Over Time, задачей которой названо увеличение срока службы нейроимплантатов до 70 лет.Хотя основными партнерами по разработке значатся APL и DARPA, к процессу исследований привлекается также множество других учреждений. Так, например, Питсбургский университет уже выполнил работы по вживлению обезьянам имплантатов, позволяющих контролировать руки робота, Калифорнийский технологический институт поможет в разработке дизайна интерфейса мозг-компьютер, а Университет Чикаго поучаствует в реализации системы тактильных датчиков.

Постепенно будут внедрены и роботы помощники, задачей которых будет непосредственная помощь врачам, данные модели уже используются в некоторых клиниках зарубежной медицины. Yurina, робот от японской компании Japan Logic Machine, который способен переносить лежачих пациентов на манер больничной каталки, только гораздо более плавно.

Что еще интереснее, Yurina может трансформироваться в инвалидное кресло, управляемое с тачскрина, контроллера или голосом. Робот достаточно ловок, чтобы перемещаться в узких коридорах, что делает его действительно неплохим помощником для настоящих врачей.Отдельно стоит упомянуть видеодемонстрацию, которую обязательно стоит смотреть с включенным звуком. Чем руководствовались режиссеры ролика, сопровождая видеоряд такой зловещей музыкой, мы не узнаем никогда – однако сочетание «доброго робота» и совершенно неуместной звуковой дорожки точно обеспечит вам порцию здорового смеха.

Приятной новостью стало изобретение роботизированных инвалидных кресел, с помощью специальных датчиков этим креслом управлять гораздо удобнее, однако новинка требует неких доработок, которые в ближайшем будущем и будут осуществлены.

Одним из самых приятных дней в жизни собаковода можно считать такой, когда четвероногий любимец полностью освоит следование за хозяином и будет сопровождать его всегда и везде, не требуя постоянного одергивания поводком. А благодаря стараниям команды ученых из Университета Саитамы (Saitama University) подобную концепцию теперь можно применять и к… инвалидным креслам.

Роботизированное кресло несет на борту камеру и датчик определения расстояния, с помощью чего система отслеживает положение плеч человека, идущего рядом с креслом. За счет этих устройств кресло «понимает», в каком направлении двигается человек, соответственно повторяя его путь. Для сидящего в кресле такой способ перемещения получается более приятным, поскольку инвалидное кресло движется плавно, а не толкается вперед спутником.

Робо-кресло способно также огибать препятствия, правда, до определенной степени. Идея, несомненно, хороша, однако требует некоторой доработки. Представьте такую ситуацию: человек сидит в кресле, а помощник в это время с кем-то оживленно беседует и жестикулирует (соответственно, совершая движения туловищем, плечами и руками). Неужели кресло будет все время «елозить» из стороны в сторону, повторяя движения плеч помощника? Создателям определенно есть над чем поработать.


Заключение

Значение роботов – помощников для человека.

Роботы помощники играют огромную роль в современной медицине. Эта отрасль еще достаточно молода и находится на начальном этапе развития, но, несмотря на это некоторые разработки введены уже во всем мире, они успешно функционируют и приносят незаменимую помощь сотрудникам медицинских учреждений. Главная проблема по моему мнению, что если в развитых странах с устойчивой положительной экономикой эти нововведения будут введены сразу после официальной массовой роботизации, то в развивающихся странах они поступят гораздо позже, а в странах третьего мира эти разработки весьма запозднятся и в ближайшем будущем там точно не будет этих уникальных разработок. Дело в том, что вся эта продукция очень дорогостоящая и для ее покупки нужны будут немалые финансирования, которые далеко не всем странам по плечу. Поэтому в будущем нужно поставить вопрос о снижение стоимости данной аппаратуры в пределах разумного, при помощи определенных конференций и заседаний глав правительств.

Казанский Государственный

Технологический Университет

Реферат на тему:

Робототехника в медицине

Выполнил студент группы

Нигматуллин А.Р.

Казань 2010.


Вступление

1. Виды медицинских роботов

Заключение


Вступление

В эпоху бурного развития науки и техники появляется множество различных нововведений в самых различных областях. Прилавки супермаркетов заполняются экзотической пищей, в торговых комплексах появляются одежды из новейших материалов, а в гипермаркетах электроники и того дальше, невозможно угнаться за развитием новых изобретений. Все привычное старое стремительно сменяется на необыкновенное, новое, к которому так не просто привыкнуть. Но если бы не было прогресса, то люди не познали бы множества загадок, которые еще не раскрыты, и природа тщательно скрывает их от нас. Несмотря на все это, благодарю высокой профессиональности современных ученых физиков, безостановочно ведутся разработки в различных сферах. Простой человек вряд ли озадачивался вопросом что же нового можно внести в этот и без того безгранично цивилизованный и прогрессивный мир. Для примера можно рассмотреть наш мир, каким он был даже одну сотню лет назад. Не было не телевизоров, не компьютеров, не бытовой техник, без которой современному человеку в быту просто не обойтисьли даже 10 лет назад, когда сотовые телефоны только –только вышли в свет и были громоздкими и очень малофункциональными, что касается и компьютерной техники. Наука движет мир вперед, и в любых областях жизнедеятельности человека нужны какие – либо нововведения. В данном пример хотелось бы выбрать как определенный аспект – область медицины, а точнее ее технического потенциала. Медицина так же не стоит на месте, появляются новее сложнейшие аппараты, для жизнеобеспечения человека, примером тому могут стать множество аппаратов, например аппарат для искусственной вентиляции легких, либо аппарат искусственной почки и т.п. Появились миниатюрные измерители сахара в крови, электронные измерители пульса и давления, этот список можно дополнить неоднократно. Конкретнее хочется остановиться на примере внедрения робототехники в медицинскую отрасль. Различные роботы создаются человеком примерно с конца 20 –ого века, за пройденное время они были значительно улучшены и модернизированы. На данный момент существуют роботы – помощники, военные разработки роботов, космические, бытовые и конечно медицинские. Далее стоит подробнее разобрать какие виды роботов и для какого применения существуют на данный момент времени.


Виды медицинских роботов

Один из наиболее известных и прославленных достижений последнего времени стал робот по названием «Да Винчи», который, как можно догадаться был назван в честь великого инженера, художника и ученого Леонардо Да Винчи. Новинка позволяет хирургам выполнять самые сложные операции, не касаясь пациента и с минимальным повреждением его тканей. Робот, который может применяться в кардиологии, гинекологии, урологии и общей хирургии, был продемонстрирован медицинским центром и отделением хирургии университета штата Аризона.

Во время операции с “да Винчи” хирург находится за пару метров от операционного стола за компьютером, на мониторе которого представлено трехмерное изображение оперируемого органа. Врач управляет тонкими хирургическими инструментами, проникающими в тело пациента сквозь небольшие отверстия. Такие инструменты с дистанционным управлением можно использовать для точных операций на небольших и труднодоступных участках тела.

Доказательством необычайных возможностей “да Винчи” стал первый в мире полностью эндоскопический байпас, выполненный совсем недавно в Колумбийском Пресвитерианском медицинском центре в Нью-Йорке. Уникальную операцию провели директор центра по роботизированной кардиохирургии Майкл Аргензиано, и заведующий отделом кардиоторакальной хирургии доктор Крейг Смит. При этом они использовали всего лишь три небольших отверстия - два для манипуляторов и одно - для видеокамеры. Понять, что это значит, может только человек, хоть раз наблюдавший “традиционную” операцию на открытом сердце.

Действия бригады, “открывающей” грудную клетку пациента, производят на новичка (по журналистскому заданию мне как-то пришлось побывать в этой роли) неизгладимое впечатление. До сих пор помню мурашки по всему телу от жуткого визга разрезающей грудину дисковой пилы и огромную рану, в которой деловито сновали руки в окровавленных резиновых перчатках.

В Соединенных Штатахбайпасили аортокоронарное шунтирование является самой распространенной операцией на открытом сердце. Ежегодно эту процедуру проходят здесь 375 тысяч человек. Широкое внедрение “да Винчи” могло бы значительно облегчить их судьбу, помогая пациентам быстрее поправляться после операции и раньше выписываться из госпиталей.

Главный хирург аризонского центра, где испытывают “да Винчи”, доктор Алан Гамильтон вообще уверен в том, что роботостроение произведет революцию в хирургии. Пока что эта революция только начинается, а вот в... кино “да Винчи” уже произвел изрядный фурор. Хирургический робот сыграл роль в последнем кинофильме сериала о Джеймсе Бонде “Умри в другой день” (Die Another Day).

В начале фильма крупным планом показываются три механические руки, шарящие по телу захваченного врагами агента 007. “Хирурги и шпионы похожи друг на друга, поскольку они стремятся выполнить свои задачи без излишней суеты и с использованием новейших технологий, - сказал представитель лондонского Имперского колледжа, где трудится сейчас “да Винчи”. - Фильмы о Джеймсе Бонде всегда восхищали меня демонстрацией невиданных технических новинок. Но я никогда не думал, что когда-нибудь отдел, который я возглавляю, будет сотрудничать с производителями бондианы”.

“Да Винчи” - лишь один из примеров развития новой отрасли в медицине.

Другие роботы применяются в самых различных операциях, вплоть до хирургии головного мозга. Пока что эти устройства достаточно громоздки, но врачи надеются на появление и миниатюрных помощников. Прошлым летом, например, отдел энергетики американской Национальной лаборатории Sandia в Альбукерке уже построил самый маленький в мире робот высотой в один сантиметр. А британская корпорация Nanotechnology Development разрабатывает крошку Fractal Surgeon, который будет самостоятельно собираться из еще меньших блоков внутри человеческого тела, проводить там необходимые действия и саморазбираться.

Теперь же робота оснастили самыми продвинутыми "глазами" в мире(о чём свидетельствуетпресс-релизкомпании). Трёхмерное зрение было у него и раньше, а вот высокой чёткости добились только сейчас.

Новая версия позволяет следить за операцией сразу двум хирургам.Один из них может как ассистировать, так и учиться мастерству у старших коллег. На рабочем дисплее может быть отображена не только картинка с камер, но и два дополнительных параметра, например данные ультразвука и ЭКГ.

Многорукий da Vinci позволяет оперировать с большой точностью, а значит, и с минимальным вмешательством в организм пациента. В результате восстановление после операции происходит быстрее, чем обычно (фото 2009 Intuitive Surgical)

Еще одна интересная новость. Сотрудники Университета Вандербильта (США) выступили с концепцией новой автоматической когнитивной системы TriageBot. Машины будут собирать медицинскую информацию, осуществлять основные диагностические измерения и в конечном итоге ставить предварительные диагнозы, пока люди занимаются более неотложными проблемами. В результате пациенты будут меньше ждать, а специалисты вздохнут свободнее и существенно снизят количество ошибок.«Последние достижения в области дизайна гуманоидных роботов, сенсорных технологий и архитектуры когнитивного контроля сделали такую систему возможной», - подчёркивает соавтор проекта Митч Уилкс.В США около 40% пациентов отделений экстренной помощи поступают туда в состоянии, опасном для жизни. Врачам приходится уделять им первоочередное внимание. Роботы могли бы заняться остальными 60%.Если проект окажется успешным, через пять лет возле стойки регистрации появятся электронные терминалы, подобные тем, что установлены в аэропортах, а также специальные «умные» стулья и мобильные роботы.При поступлении пациент должен прежде всего зарегистрироваться. В предлагаемой системе сопровождающее лицо сможет внести все необходимые данные через терминал с сенсорным экраном. Возможны голосовые подсказки. При этом автомат сможет распознавать наличие критической информации (например, острая боль в груди) и информировать о ней врача, чтобы пациентом занялись как можно скорее. В противном случае больного направят в зал ожидания.План более подробной диагностики пациента разрабатывается в соответствии с этими первоначальными сведениями. В предлагаемой системе простейшие процедуры можно проделать уже в приёмной, на специальном стуле, который измерит кровяное давление, пульс, насыщение крови кислородом, частоту дыхания, высоту и вес.Кроме того, мобильные помощники будут периодически проверять состояние пациентов в зале ожидания, уделяя особое внимание артериальному давлению, частоте пульса и, возможно, интенсивности болевых ощущений. В случае обнаружения критических изменений робот обязан проинформировать человеческий персонал.Последний элемент системы TriageBot - это администратор, который следит за машинами, обеспечивает связь с больничной базой данных и служит посредником между автоматикой и медиками.Планируется провести ряд исследований, в ходе которых будет определён точный набор функций роботов и их внешний вид. Параллельно разрабатываются прототипы.

Для более точных и удобных расчетов ученые создали чудного робота –фармацевта. Электронно-механическое чудо, работающее в большом подвале Пресвитерианской больницы в городе Альбукерке, штат Нью-Мексико, зовут Рози. “Родитель” этого мощного механического агрегата, перемещающегося по четырехметровому рельсу в темной застекленной комнате, - новое подразделение корпорации Intel - Intel Community Solutions, использующее достижения фирмы для решения социальных задач.

Все больше людей в мире опасаются, что рано или поздно их должность будет упразднена, а выполнять работу за них будут роботы. Грозит ли такая перспектива врачам? В ближайшем будущем - вряд ли. Несмотря на то что механические помощники не испытывают эмоций и не устают, их реакции в сложных ситуациях сильно уступают человеческим. А врач - именно та профессия, где нужно принимать ответственные решения в условиях неопределенности: слишком индивидуален каждый организм, слишком много всего может пойти не так.

Поэтому полноценный робот-врач - все еще фантастика. Что, однако, совершенно не мешает медикам и ученым, ведущим исследования в околомедицинских сферах, использовать роботов в хвост и в гриву.

Несомненно, если мы говорим о роботах в медицине, первым делом следует упомянуть систему da Vinci. Эти роботы были в числе пионеров автоматизированной хирургии, их прототип был разработан еще в конце 1980-х годов.

Da Vinci - одновременно и хирург, и ассистент. Врач-оператор управляет манипуляторами машины, наблюдая за ее действиями через специальную камеру. Такие операции чрезвычайно дороги - сам по себе робот стоит немало, и расходники для него тоже недешевы, зато он обладает высочайшей точностью, и опытный хирург-оператор способен творить с его помощью чудеса.

В России системы da Vinci используются с 2007 года - например, такой робот есть в новосибирской клинике им. Мешалкина, - но большого распространения они не получили (как легко догадаться, из-за цены). Весной 2017 года российские ученые заявили , что смогли сконструировать аналогичного робота, который даже лучше оригинала, но и эта разработка требует гигантских финансовых вливаний - хотя бы для того, чтобы поставить ее производство на коммерческую основу.

Робот-хирург da Vinci полностью контролируется оператором, но теперь появились более самостоятельные аналоги. Пожалуй, пиком робосамостоятельности можно назвать недавний случай в Китае - там механический стоматолог провел часовую операцию по установке двух имплантатов полностью в одиночку, врачи-люди только наблюдали, не вмешиваясь. Погрешность при установке была минимальной. Хотя интересно, как себя при этом чувствовала пациентка? Все-таки иногда человеческий фактор - скорее плюс, чем минус.

Впрочем, за квалификацию китайских роботов переживать не приходится - осенью разработанный тамошними мастерами робот с искусственным интеллектом сдал экзамен на врача и набрал при этом, кстати, на 96 баллов больше, чем требовалось для прохождения (456 при норме 350).

Собеседник и строитель

Функции у роботов могут быть самыми разнообразными. Скажем, есть робот-психотерапевт , который общается с пациентами в чате, используя технологии машинного обучения. Он весьма востребован - более двух миллионов консультаций в неделю. Возможно, это связано с тем, что людям неприятно, что специалист может как-то оценивать их поведение, а с роботом такой ситуации не возникнет никогда.

Есть робот-наностроитель - он умеет строить «домики» из молекул. Может быть, это звучит глуповато, но на самом деле у этой крохотульки (их нужно выстроить миллион друг на друге, чтобы эта башня достигла миллиметровой высоты) огромнейшее будущее. Скажем, она может по молекулярной формуле построить нужное лекарство - да вообще что угодно может построить. Он пока еще только появился и на поток производство таких устройств еще не поставлено, но вполне вероятно, что когда-нибудь их будут использовать повсеместно. Управляются они, если что, не кнопками, а химическими сигналами.

Еще один недавно представленный робот - механизм , который помогает сокращаться не всему сердцу, а только его половине. Часто сердечная недостаточность затрагивает только часть сердца, и зачем тогда тратить лишние ресурсы на здоровую часть? В таких случаях вполне может пригодиться специальный механизм - он похож на букву Э, где полуокружность «обнимает» пострадавшую от болезни часть и помогает ей биться, а средняя палочка выступает якорем, чтобы робот никуда не уполз.

К слову, о ползании - роботы совсем необязательно технически сложны. На днях опубликовали данные исследования , в котором использовался роботизированный макет младенца из фольги. Ученые с его помощью проверяли, как много аллергенов и прочей дряни вдыхает ребенок, ползая по ковру, по сравнению с взрослым, который гуляет по тому же ковру ногами. Результаты исследования, честно говоря, лучше не знать.

Вообще о роботах в медицине можно рассказывать бесконечно, и пока говоришь об одном - изобретают другого, третьего, пятого. Все эти роботы в конечном итоге приносят пользу пациентам - непосредственную или косвенную. С помощью разнообразных устройств врачи получают все больше и больше возможностей, но без человека эти роботы бесполезны, так что вряд ли нас ожидает судьба планеты Шелезяки.

Ксения Якушина

Фото istockphoto.com

Сегодня исследовательские группы по всему миру пытаются нащупать концепцию использования роботов в медицине. Хотя правильнее, пожалуй, говорить «уже нащупали». Судя по количеству разработок и интересу всевозможных научных групп, можно утверждать о том, что магистральным направлением стало создание медицинских микророботов. Сюда же можно отнести и роботов с приставкой «нано-». Причём первые успехи в этой области были достигнуты сравнительно недавно, всего восемь лет назад.

В 2006 году группа исследователей под руководством Сильвана Мартеля впервые в мире провела успешный эксперимент, запустив крошечного робота размером с шарик от авторучки в сонную артерию живой свиньи. При этом робот перемещался по всем назначенным ему «путевым точкам». И за прошедшие с тех пор годы микроробототехника несколько продвинулась вперёд.

Одной из главных целей для инженеров сегодня является создание таких медицинских роботов, которые будут способны перемещаться не только по крупным артериям, но и по относительно узким кровеносным сосудам. Это позволило бы проводить сложные виды лечения без столь травматического хирургического вмешательства.

Но это далеко не единственное потенциальное преимущество микророботов. В первую очередь, они были бы полезны при лечении рака, целенаправленно доставляя лекарство прямо к злокачественному образованию. Ценность такой возможности сложно переоценить: при химиотерапии препараты подаются через капельницу, нанося сильнейший удар по всему организму. По сути, это сильный яд, который повреждает многие внутренние органы и, за компанию, саму опухоль. Это сравнимо с ковровой бомбардировкой ради уничтожения небольшой одиночной цели.

Задача создания подобных микророботов находится на стыке целого ряда научных дисциплин. Например, с точки зрения физики - как заставить столь малый объект самостоятельно двигаться в вязкой жидкости, которой для него является кровь? С точки зрения инженерии - как обеспечить робота энергией и как отслеживать перемещение по организму крохотного объекта? С точки зрения биологии - какие использовать материалы для изготовления роботов, чтобы они не наносили вреда организму человека? А в идеале, роботы должны быть биоразлагаемыми, чтобы не пришлось ещё решать проблему их вывода из организма.

Одним из примеров того, как микророботы могут «загрязнять» тело пациента, является «биоракета».

Этот вариант микроробота представляет собой титановое ядро, окружённое оболочкой из алюминия. Диаметр робота 20 мкм. Алюминий вступает в реакцию с водой, в ходе которой на поверхности оболочки формируются пузырьки водорода, которые толкают всю конструкцию. В воде такая «биоракета» проплывает за одну секунду расстояние, равное 150 своим диаметрам. Это можно сравнить с человеком двухметрового роста, который за секунду проплывает 300 метров, 12 бассейнов. Работает такой химический двигатель около 5 минут благодаря добавке галлия, уменьшающего интенсивность образования оксидной плёнки. То есть максимальный запас хода составляет около 900 мм в воде. Направление движению задаётся роботу внешним магнитным полем, а использовать его можно для точечной доставки лекарств. Но только после иссякания «заряда», в пациенте окажется россыпь микрошариков с алюминиевой оболочкой, который отнюдь не благотворно влияет на организм человека, в отличие от биологически нейтрального титана.

Микророботы должны быть так малы, что просто масштабировать до нужного размера традиционные технологии не получится. Никаких стандартных деталей подходящего размера тоже не производят. А даже если бы и производили, они бы просто не подошли для таких специфических нужд. И потому исследователи, как это уже много раз было в истории изобретений, ищут вдохновения у природы. Например, у тех же бактерий. На микро, и тем более наноуровне действуют совсем другие физические законы. В частности, вода является очень вязкой жидкость. Поэтому нужно применять другие инженерные решения для обеспечения движения микророботов. Бактерии эту задачу зачастую решают с помощью ресничек.

В начале этого года группа исследователей из Университета Торонто создала прототип микроробота длиной в 1 мм, управляемого внешним магнитным полем и оснащённого двумя захватами. Разработчикам удалось с его помощью построить мост. Также этот робот может использоваться не только для доставки лекарств, но и для механического восстановления тканей в кровеносной системе и органах.

Мускульные роботы

Ещё одно интересное направление в микроробототехнике - роботы, приводимые в движение мускулами. Например, есть такой проект: стимулируемая электричеством мышечная клетка, к которой прикреплён робот, чей «хребет» сделан из гидрогеля.

Эта система, по сути, копирует природное решение, встречающееся в организмах многих млекопитающих. Например, в теле человека сокращение мышц передаётся костям через сухожилия. В данном биороботе, когда клетка сокращается под действием электричества, то «хребет» сгибается и поперечные перекладины, выполняющие роль ног, притягиваются друг к другу. Если одна из них при сгибании «хребта» перемещается на меньшее расстояние, то робот движется по направлению к этой «ноге».

Есть и другое видение, какими должны быть медицинские микророботы: мягкими, повторяющими формы различных живых существ. Например, вот такая робо-пчела (RoboBee).

Правда, она предназначена не для медицинских целей, а для целого ряда других: опыления растений, поисково-спасательных операций, обнаружения ядовитых веществ. Авторы проекта, конечно, не копируют слепо анатомические особенности пчелы. Вместо этого они внимательно анализируют всевозможные «конструкции» организмов различных насекомых, адаптируя и воплощая их в механике.

Или другой пример использования имеющихся в природе «конструкций» - микроробот в виде двустворчатого моллюска. Движется он с помощью хлопанья «створок», создавая тем самым реактивную струю. При размере около 1 мм он может плавать внутри человеческого глазного яблока. Как и большинство других медицинских роботов, этот «моллюск» в качестве источника энергии использует внешнее магнитное поле. Но есть важное отличие - он лишь получает энергию для движения, само поле его не двигает, в отличие от большинства других видов микророботов.

Большие роботы

Конечно, одними лишь микророботами парк медицинской техники не ограничивается. В фантастических фильмах и книгах медицинские роботы обычно представляются в виде замены хирурга-человека. Мол, это некое крупное устройство, которое быстро и очень точно производится всевозможные хирургические манипуляции. И не удивительно, что эта идея была реализована одной из первых. Конечно, современные хирургические роботы не способны заменить человека целиком, но зашивание им уже вполне доверяют. Также они используются в качестве продолжения рук хирурга, как манипуляторы.

Однако в медицинской среде не утихают споры относительно целесообразности использования таких машин. Многие специалисты придерживаются мнения, что особых выгод такие роботы не дают , а благодаря своей высокой цене существенно увеличивают стоимость медицинских услуг. С другой стороны, есть исследование , согласно которому пациентам с раком простаты, подвергавшимся хирургической операции с роботом-ассистентом, в дальнейшем требуется менее интенсивное применение гормональных средств и радиотерапии. В общем, неудивительно, что усилия многих учёных оказались направлены на создание микророботов.

Интересным проектом является Робонавт (Robonaut), телемедицинский робот, предназначенный для оказания помощи космонавтам. Это пока экспериментальный проект, но такой подход может быть использован не только для оказания таким важным и дорогим в подготовке людям, как космонавты. Телемедицинские роботы могут быть использованы и для оказания помощи в различных труднодоступных районах. Конечно, это будет целесообразно только в том случае, если дешевле будет установить в лазарете какого-нибудь глухого таёжного или горного посёлка робота, чем держать фельдшера на зарплате.

А этот медицинский робот ещё более узкоспециализирован, он используется для лечения облысения. ARTAS занимается автоматическим «выкапыванием» волосяных фолликул из кожи головы пациента, основываясь на фотографиях высокого разрешения. Потом врач-человек вручную внедряет «урожай» в облысевшие участки.

Всё-таки мир медицинских роботов вовсе не так однообразен, как может показаться неискушённому человеку. Более того, он активно развивается, идёт накопление идей, результатов экспериментов, ищутся наиболее эффективные подходы. И кто знает, возможно, ещё при нашей жизни слово «хирург» будет означать врача не со скальпелем, а с баночкой микророботов, которых достаточно будет проглотить или внедрить через капельницу.

ООО «ОЛМЕ» Санкт-Петербург., к.м.н. Вагин А.А.

Развитие робототехники в восстановительной медицине, реабилитация обездвиженных больных - проблемы и решения.

Конкуренцию на сегодняшний день определяет не обладание большими ресурсами или потенциалом производства, а объем знаний накопленный предыдущими поколениями, способность его структурировать, им управлять и персонально использовать.
Одной из важных задач Всемирной организации здравоохранения (ВОЗ) является внедрение в клиническую медицину перспективных ИИТ с методами и средствами ИИ для совместного информационного взаимодействия и использования.

Современная концепция интеллектуальных информационных систем предполагает объединение электронных записей о больных (electronic patient records) с архивами медицинских изображений, данными мониторинга с медицинских приборов, результатами работы визированных лабораторий и следящих систем, наличие современных средств обмена информацией (электронной внутрибольничной почты, Internet, видеоконференций и т.д.) .

В настоящее время активное становление и интенсивное развитие получило перспективное профилактическое направление в виде восстановительной медицины, сложившееся на основе принципов санологии и валеологии. Высокая заболеваемость и смертность, неуклонное снижение качества жизни, отрицательный прирост народонаселения способствовали разработке и внедрению в практическую медицину самостоятельного профилактического направления.

Однако, существующие на сегодняшний день экономические, социальные, правовые, медицинские учреждения выполняют функции в основном по лечению и реабилитации инвалидов, вопросами предупреждения и реабилитационного лечения болезни занимаются недостаточно. Экономическая и социальная ситуация в нашей стране способствует появлению чувства страха и напряженности при наличии травмы или болезни у человека, является источником психосоциальных проблем.

Необходимость активного сохранения здоровья в условиях инфраструктуры медицинских организаций определяется стремлением вывести медицину на новый виток развития. Однако дальнейшее реформирование ее затруднено не только из-за недостаточного финансирования данной отрасли, но и четких единых нормативов и методик планирования, ценообразования, тарификации медицинских услуг, а также распределением ответственности между органами исполнительной власти и ее субъектов за выполнением определенных объемов медицинской помощи.

За последнее десятилетие был достигнут значительный прогресс в медицинской робототехнике. Сегодня несколько тысяч операций на предстательной железе выполняются при помощи медицинских роботов с минимально возможной травматичностью для пациентов. Медицинские роботы позволяют обеспечить минимальную травматичность хирургических операций, более быстрое восстановление пациентов, минимальный риск инфекции и побочных эффектов. Хотя число медицинских процедур, которые выполняют роботы еще сравнительно невелико, следующее поколение робототехники сможет предоставить хирургам более широкие возможности для визуализации операционного поля, обратной связи с хирургическим инструментом и окажет огромное влияние на прогресс в хирургии.

По мере старения населения, число людей, страдающих сердечно-сосудистыми заболеваниями, инсультами и другими заболеваниями продолжает расти. После перенесенного инфаркта, инсульта, позвоночно-спинальной травмы очень важно, чтобы пациент, насколько это возможно, регулярно занимался физическими упражнениями.

К сожалению, пациент обычно вынужден заниматься физической терапией в лечебном учреждении, что зачастую невозможно. Следующее поколение медицинских роботов поможет пациентам выполнять хотя бы часть необходимых физических упражнений в домашних условиях.
Робототехника также начинает использоваться в здравоохранении для ранней диагностики аутизмы,
тренировки памяти у людей с особенностями психического развития.

Развитие робототехники в других странах.

Европейская комиссия недавно приступила к осуществлению программы развития робототехники, в которую вложило 600 млн. евро чтобы укрепить обрабатывающую промышленность и сферу услуг. Корея планирует вложить 1 млрд. долларов США в развитие робототехники в течение 10-ти лет. Подобные, но меньшие программы существуют в Австралии, Сингапуре и Китае. В Соединенных Штатах, финансирование исследований и разработок в области робототехники осуществляется, в основном, в оборонной промышленности, в частности, для беспилотных систем. Но существует и программы развития робототехники в области здравоохранения и услуг. Несмотря на то, что промышленные отрасли робототехники родился в США, мировое лидерство в этой области в настоящее время принадлежит Японии и Европе. И не очень понятно, как США смогут сохранить их лидирующие позиции в течение длительного времени без национальной приверженности развития и внедрения технологий робототехники .

Существующие структурные подразделения осуществляют этапность реабилитационных мероприятий по принципу: стационар – стационарно-курортное лечение – поликлиника. На I этапе стационарной помощи больному устраняются и предупреждаются осложнения острого заболевания, осуществляется стабилизация процесса, проводится физическая и психическая адаптация.

Санаторно-курортный этап (II) – это промежуточное звено между стационаром и поликлиникой, где при относительной стабилизации клинико-лабораторных показателей, проводится медицинская реабилитация больных на основе использования целебных природных факторов. Ш этап – это поликлиника, основное назначение которой на современном уровне амбулаторно-поликлинической помощи выявить компенсаторные возможности организма, их развитие в разумных пределах, а также осуществить комплекс мероприятий, направленных на борьбу с факторами риска сопутствующих осложнений и ухудшений заболеваний. Однако, эта система помощи на практике не всегда осуществима.

Основная трудность – значительные экономические и финансовые затраты на госпитализацию больных, особенно с пограничной стадией заболевания, высокая стоимость санаторно-курортного лечения, недостаточная оснащенность поликлиник современными методами обследования и лечения.

В настоящее время существует несколько международных стандартов регистрации клинических данных в МИС лечебных учреждений:

  • SNOMED International (College of American Pathologists, США);
  • Unified medical language system (National Medical Library, США);
  • Read clinical codes (Центр по кодированию и классификации национальной системы здравоохранения, Великобритания) .

В последние годы в США большинство крупных медицинских центров уже не работают без информационных систем (ИС), на которые приходится более 10% расходов больниц .
В здравоохранении США объем расходов на информационные технологии составляет примерно 20 млрд. долларов в год. Особый интерес вызывают медицинские системы, которые непосредственно помогают врачу увеличить эффективность работы и повысить качество лечения больных .

Проведенные исследования за последние пять лет дали возможность более полно понять процессы происходящие при травме спинного мозга и ее последствиях, а также принципах воздействия на негативные моменты происходящие в зоне повреждения. Такое пристальное внимание именно к этой категории пациентов объяснимо тяжестью последствий возникающих в процессе травмы и последующего дальнейшего развития травматической болезни спинного мозга.

Морфологическое изучение травмированного спинного мозга (СМ) указывает на то, что повреждение тканей не ограничивается областью воздействия разрушающей силы, а, захватывая первично интактные участки, приводит к образованию более обширного повреждения. При этом в процесс вовлекаются структуры головного мозга, а также периферической и вегетативной нервной систем. Установлено, что сенсорные системы изменяются гораздо глубже, чем моторные .

Современная концепция патогенеза травматического повреждения СМ рассматривает два основных взаимосвязанных механизма гибели клеток: некроз и апоптоз.
С некрозом связывают непосредственное первичное повреждение мозговой ткани в момент приложения травматической силы (контузия или сдавление паренхимы мозга, дисциркулляторные сосудистые расстройства). Некротический очаг впоследствии эволюционирует в глиально-соединительнотканный рубец, вблизи которого в дистальном и проксимальном отделах СМ образуются мелкие полости, образующие посттравматические кисты различного размера .

Апоптоз является механизм отсроченного (вторичного) повреждения клеток, представляющего собой их физиологическую гибель, необходимую в норме для обновления и дифференцировки тканей . Развитие апоптоза при травме СМ связано с воздействием на геном клетки возбуждающих аминокислот (глутамат), ионов Са2+, медиаторов воспаления, ишемии и пр. .
Первоначально наблюдается апоптоз нейронов вблизи от некротического очага (пик гибели - 4-8 часов). Затем развивается апоптоз микро- и олигодендроглии (пик гибели – третьи сутки). Следующий пик глиального апоптоза наблюдается через 7-14 суток на отдалении от места травмы и сопровождается гибелью олигодендроцитов.
Вторичные патологические изменения включают петехиальные кровоизлияния и геморрагический некроз, свободнорадикальное окисление липидов, увеличение протеазной активности, воспалительный нейронофагоцитоз и тканевую ишемию с дальнейшим высвобождением ионов Са2+, возбуждающих аминокислот, кининов, серотонина. Всё это в конечном итоге проявляется распространенной восходящей и нисходящей дегенерацией и демиелинизацией нервных проводников, гибелью части аксонов и глии.

Расстройства в деятельности ряда органов и систем, непосредственно не пострадавших при травме, создают новые многообразные патологические ситуации. В денервированных тканях повышается чувствительность к биологически активным веществам (ацетилхолину, адреналину и т. д.), возрастает возбудимость рецептивных полей, снижается порог мембранного потенциала, уменьшается содержание АТФ, гликогена, креатинфосфата. В паретичных мышцах нарушаются липидный и углеводный обмен, что влияет на их механические свойства - растяжимость и сократимость, способствует ригидности.

Расстройство минерального обмена приводит к формированию параоссальных и периартикулярных осификатов, осифицирующего миозита, остеопороза.
Все это может стать причиной новых осложнений: пролежней, трофических язв, остеомиелита, суставно-мышечных контрактур, анкилозов, патологических переломов, костных деформаций - в опорно-двигательном аппарате; камнеобразования, рефлюкса, воспаления, почечной недостаточности - в мочевыводящей системе. Складываются связи, носящие разрушительный характер. Возникает угнетение и функциональное выпадение ряда систем, непосредственно в травме не пострадавших. Под действием непрерывного потока афферентной импульсации активные нервные структуры впадают в состояние парабиоза и становятся невосприимчивыми к специфическим импульсам.

Параллельно формируется и другая динамическая линия - восстановительно-приспособительных функциональных изменений. В условиях глубокой патологии происходит оптимально возможная перестройка механизмов обеспечения адаптации к среде. Организм переходит на новый уровень гомеостаза. В этих условиях гиперреактивности и напряжения формируется травматическая болезнь спинного мозга (ТБСМ) .
С целью проверки предположения о существовании способов предупреждения формирования рубцовой ткани в зоне травмы спинного мозга, до прорастания через нее аксонов нейронов (рабочая гипотеза), Вагиным Александром Анатольевичем была проведена экспериментальная работа на крысах породы «Вистар». Для постановки экспериментов отбирали хорошо развитых и здоровых животных с хорошим поведением, половозрелых, годовалого возраста.

Все экспериментальные процедуры и манипуляции проводились в операционной кафедры патологической физиологиии Военно-Медицинской академии в условиях, отвечающих требованиям СанПин 2.1.3.1375-03. Животные укладывались на операционный стол. Применяли эфирный наркоз. В контрольной группе (группа А) было 22 крысы, в основных группах (группы В и С) – по 21 и 22 соответственно. Всем животным была проведена частичная (под эфирным наркозом) денервация нижней части спинного мозга на уровне 3 грудного позвонка. Экспериментальную денервацию у подопытных животных выполняли в стерильных условиях с соблюдением правил асептики и антисептики. Для нанесения спинальной травмы крысам, использовали только прямую иглу 1,2x40 мм и шовный материал для наложения сдавливающей петли на СМ (супрамидная нить диаметром 0.1 мм стерильная). После нанесения экспериментальной травмы в послеоперационном периоде животные разных групп содержались по разному, но все погружались в медикаментозный сон (Sol. Relanii 0,3 внутрибрюшинно, 2 раза в сутки) на весь срок наблюдения.

Группа контроля (А) содержалась в стандартных условиях, а у крыс основных групп (В и С) применялась методика содержания в условиях фиксации в специальной кювете. Устройство с кюветой служили прообразом «оптимальной восстанавливающей среды» и состояло из фиксированного ложа выполненного из полиуретановой трубы диаметром 5см, длиной 10 см., рассеченной по длиннику с оставлением лепестков длиной 5 см., шириной 1 см. для фиксации лап животного. Лепестки кюветки соединены с движущимися рычагами электродвигателей (4шт.), штоки которых совершают линейные движения позволяющие совершать заданные движения лапами животного (пассивные движения) через релейное устройство получающее команды из промышленного компьютера по заданной программе. В описанное ложе животное укладывалось на спину. Его лапы фиксировались к лепесткам кюветки. Пассивные движения осуществлялись в виде отведения и приведения конечностей животного. Возможные активные движения у животных осуществлялись ими в периоды пробуждения.

Эксперимент выполняли по двум направлениям:

  1. Исследовались изменения на срезах спинного мозга животных после травмы во всех группах под световым и электронным микроскопами.
  2. В ходе наблюдения за животными контрольной и основных групп фиксировались сроки восстановления болевой, температурной чувствительности, а также двигательной активности.

В результате проведенных гистологических, патофизиологических исследований получены следующие результаты. При гистологическом изучении срезов спинного мозга крыс в контрольной группе А гибель клеток в результате полученной травмы после непосредственного повреждения спинного мозга происходит в результате некроза и продолжается до 14 дней. В дальнейшем гибель клеток происходит в результате апоптоза, который наблюдается до 21-30 дней с формированием рубцовой ткани. Рубцовая ткань формируется из дегенерированных хаотично расположенных миелиновых волокон и осевых цилиндров не дающих возможности прорастания аксонов нейронов через зону рубцевания. Область формирования рубцовой ткани включает ядра клеток, переходящих в стадию апоптоидных телец.

В то же время, в основной группе В* - (В и С) выявляется отчетливая гистологическая картина восстановления клеток нейроглии и нейронов в условиях применения метода ПДИК.
При обработке статистических материалов экспериментальной патофизиологической части исследования данных в группе А восстановления болевой и температурной чувствительности, а также двигательной функции не отмечено.
В группе В* - (В и С) восстановление болевой чувствительности отмечено в 21,5% случаев, в 78,5% случаев восстановления не наступило. Восстановление температурной чувствительности отмечено в 15,4 % подопытных животных, в 84,6 % случаев восстановления не отмечено. В результате изучения изменения двигательной активности – восстановление наблюдалось только в основной группе В*. Отмечено, что движения в конечностях восстановились в 26,2% животных, в 73,8% случаев восстановления не наступило. Согласно данным непараметрического анализа на состояние болевой, температурной чувствительности, двигательной функции у исследуемых крыс оказывает достоверное (р<0,05) влияние на комплекс реабилитационных лечебных мероприятий с использованием метода постоянной длительной импульсной кинетикотерапии. Все данные используемые в анализе измерялись в номинальной шкале, для которой используются следующие критерии: Фи, V Крамера и коэффициент сопряженности, подтверждающие выявленные значимости различий встречаемых параметров в исследуемых группах (р<0,05).

Практическая апробация экспериментальной системы на подопытных животных привела к выводу, что реабилитационная методика, направленная на адекватное использование обнаруженного феномена создания оптимизирующих условий для восстановления функций поврежденного СМ должна обеспечивать следующие условия:

  • периодическое создание раздражения эфферентных и афферентных путей выше и ниже очага повреждения СМ;
  • замыкание рефлекторной дуги и тем самым включения в работу сегментарно-рефлекторного аппарата спинного мозга через один и тот же промежуток времени, с одной и той же силой, в одной и той же последовательности длительное время;
  • работать в круглосуточном режиме на протяжении всего времени реабилитации.

Анализ результатов экспериментальной части работы показал, что применение метода постоянной длительной импульсной кинетикотерапии в посттравматическом периоде в клинических условиях у пациентов с последствиями спинальных травм может стимулировать восстановление утраченных функций органов и систем.

При переводе экспериментально подтвержденной модели оптимальной физиологической среды на платформу клинической апробации исходили из того, что в основу разрабатываемой новой методики реабилитационного лечения таких больных должны будут решаться основные задачи реабилитации:

  • создание максимально благоприятных условий для течения регенеративных процессов в спинном мозге;
  • предупреждение и лечение пролежней, свищей, остеомиелитов, контрактур, деформаций костно-суставного аппарата;
  • устранение или уменьшение болевого синдрома;
  • установление самостоятельных контролируемых актов мочеиспускания и дефекации;
  • предупреждение и лечение осложнений со стороны мочевыделительной, дыхательной и сердечно-сосудистой систем;
  • предупреждение и лечение атрофий и спастичности мышц;
  • выработка способности к самостоятельному передвижению и самообслуживанию.

При финансовой поддержке компании ООО “ОЛМЕ” была создана система реабилитационная кинетическая, способствующая проведению в автоматическом режиме периодически создаваемого раздражения эфферентных и афферентных путей, замыкания рефлекторной дуги и, тем самым, включения в работу сегментарно-рефлекторного аппарата спинного мозга через один и тот же промежуток времени, с одной и той же силой, в одной и той же последовательности в круглосуточном режиме на протяжении всего времени нахождения пациента на реабилитации (сутки, недели, месяцы и годы) и позволяющая сохранить суставно-мышечный аппарат, периферическую нервную систему и сегментарный аппарат, тем самым позволяя говорить о новых подходах реабилитации .

Несмотря на отсутствии финансирования со стороны государства, сегодня компанией ООО “ОЛМЕ” заложены основы робототехники с информационными технологиями для реабилитации обездвиженных больных в течении длительного времени в домашних условиях в нашей стране. Данное направление развития реабилитации дает возможность значительно снизить смертность и инвалидизацию у этой категории больных, увеличить продолжительность жизни и в большинстве случаев через 4-5 лет вернуться к полноценной трудовой деятельности.

Список литературы:

  1. Адо А.Д. Патологическая физиология./ А. Д. Адо, Л. М. Ишимова. - М., 1973. - 535 с.
  2. Вагин А.А. Патофизиологическое обоснование применения метода постоянной длительной импульсной кинетикотерапии в лечении и реабилитации больных с последствиями спинальной травмы: дис. канд. мед. наук. – СПб., 2010.– 188 с.
  3. Басакьян А.Г. Апоптоз при травматическом повреждении спинного мозга: перспективы фармакологической коррекции / А. Басакьян, А.В. Басков, Н.Н.. Соколов, И.А Борщенко.- Вопросы медицинской химии № 5, 2000. [Электронный ресурс]. - Режим доступа: http://www.jabat.narod.ru/005/0145.htm. или http://medi.ru/pbmc/8800501.htm
  4. Борщенко И. А. Некоторые аспекты патофизиологии травматического повреждения и регенерации спинного мозга. / И. А. Борщенко, А. В. Басков, А. Г. Коршунов, Ф. С. Сатанова // Журнал Вопросы нейрохирургии. - №2.- 2000. [Электронный ресурс]. - Режим доступа: http://sci-rus.com/pathology/index.htm.
  5. Викторов И. В. Современное состояние исследований регенерации центральной нервной системы in vitro и in vivo./ И. В. Викторов // Второй Всесоюзный симпозиум "Возбудимые клетки в культуре ткани". - Пущино, 1984. - С. 4-18.
  6. Георгиева С. В.Гомеостаз, травматическая болезнь головного и спинного мозга. / С. В. Георгиева, И. Е. Бабиченко, Д. М. Пучиньян - Саратов, 1993 – 115 c
  7. Гретен А. Г. Проблемные аспекты механизмов восстановительных процессов в мозге. / А. Г. Гретен. // Механизмы и коррекция восстановительных процессов мозга. - Горький, 1982. - С. 5 -11.
  8. Aranda J.M. The problem-oriented medical records: Experiences in a community hospital. JAMA 229:549-551, 1974
  9. Braunberg A.C. Smart Card"s Appeal Hastens Jump into Mainstream // Signal. 1995. - January. P.35-39.
  10. Buchanan J.M. Automated Hospital Information Systems. // Mil. Med. - 1996. -Vol. 131,№ 12.-P.1510-1512.
  11. ISO/IEC JTC1/SC 29 N1580, 1996-04-23. Expert from ISO Bulletin: Standards for Global Infrastracture Infrastructure, What is the GII? Medicine 2001: New Technologies, New Realities, New Communities //MedNet- 1996, August 4.-8 p.
  12. Van Hentenryck K. Health Level Seven. Shedding light on HL7"s Version 2.3 Standard. // Healthc Inform. - 1997. - Vol. 14, № 3. - P.74.
  13. Wilson I.H., Watters D. Use of personal computers in a teaching hospital in Zambia //Br. Med. F. - 1988. - vol. 296, N 6617. - P. 255-256.
  14. Пузин М.Н., Кипарисова Е.С., Гюнтер Н.А., Кипарисов В.Б. Кафедра нервных болезней и нейростоматологии «Медбиоэкстрем», Клиническая больница «Медбиоэкстрем» №6, поликлиника №107 г. Москва
  15. roboting.ru/tendency/727-obzor-pers
  16. Нейротравматология: Справочник./ Под ред. А.Н. Коновалова, Л.Б. Лихтермана, А.А. Потапова.- Москва, 1994.- 356 с. [Электронный ресурс]. - Режим доступа: http://sci-rus.com/reference_book/ref_00.htm
  17. Окс С. Основы нейрофизиологии: пер. с англ./ С. Окс - М., Мир, 1969. - 448 с.
  18. Ромоданов А.П., Некоторые проблемы травмы позвоночника и спинного мозга по данным зарубежной литературы./ А.П. Ромоданов, К.Э. Рудяк. // Вопр.нейрохирургии. - 1980. - № 1. - С.56 - 61
  19. Шевелев И. Н. Восстановление функции спинного мозга: современные возможности и перспективы исследования./ И. Н. Шевелев, А. В. Басков, Д. Е. Яриков, И. А. Борщенко // Журнал Вопросы нейрохирургии - 2000. - № 3. [Электронный ресурс]. - Режим доступа: http://www.sci-rus.com/pathology/regeneration.htm
  20. Lockshin R.A. Nucleic acids in cell death. Cell agening and cell death./ R.A Lockshin, Z. Zakeri-Milovanovic./ Eds. I. Devis, and D.C. Sigl.. – 1984, Cambridge. - P. 243 - 245
  21. Yong C., Arnold P.M., Zoubine M.N., Citron B.A., Watanabe I., Berman N.E., Festoff B.W. // J. Neurotrauma. – 1998 - № 15. – P. 459 - 472.
  • Просмотров: 6900
  • " onclick="window.open(this.href," win2 return false > Печать


error: Контент защищен !!