История использование ультразвука в хирургии. Ультразвуковая хирургия

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

ГБОУ ВПО «ИЖЕВСКАЯ ГОСУДАРСТВЕННАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ»

МИНИСТЕРСТВА ЗДРАВООХРАНЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

КАФЕДРА МЕДБИОФИЗИКИ, ИНФОРМАТИКИ, ЭКОНОМИКИ

РЕФЕРАТ

ФИЗИЧЕСКИЕ ОСНОВЫ ПРИМЕНЕНИЯ УЛЬТРАЗВУКА В ХИРУРГИИ

Выполнила:

студентка 1 курса 103 гр. пед. ф-та Фазуллина А.И.

Проверил:

ст. преподаватель Рябчикова М.С.

Введение

Основные области применения ультразвука в хирургии

Ультразвуковая диагностика

Ультразвуковые инструменты

Ультразвуковой комплекс для лапароскопии

Бактерицидные свойства ультразвука

Заключение

Приложение

Введение

Цель работы : выявить основные области применения ультразвука в оперативной хирургии.

Задачи :

раскрыть понятия ультразвук, ультразвуковая диагностика;

установить физические основы применения ультразвука;

роль ультразвука в хирургии.

Актуальность темы : сегодня ультразвук с успехом применяется в ряде областей медицины и в первую очередь для лечебных целей в терапии, в диагностике различных заболеваний, в хирургической практике. С помощью ультразвука стерилизуют жидкости, моют и дезинфицируют хирургические инструменты, руки хирурга, производят диспергирование и ингаляцию. Использование ультразвука в медицине основано на физических явлениях, происходящих в биологических тканях: это различное поглощение ультразвука тканями, отличающимися внутренним строением, отражение ультразвуковых колебаний при переходе сред разной плотности, образование под действием ультразвука тепла в тканях (возбуждение в них колебаний, развитие различных потоков биологических жидкостей и т.д.).

Ультразвуком называются звуковые колебания, лежащие выше порога восприятия органа слуха человека. Пьезоэффект, благодаря которому получают ультразвуковые колебания, был открыт в 1881 году братьями П. Кюри и Ж.-П. Кюри. Свое применение он нашел во время первой мировой войны, когда К.В. Шиловский и П.Ланжевен разработали сонар, использовавшийся для навигации судов, определения расстояния для цели и поиска подводных лодок. В 1929 году С.Я. Соколов применил ультразвук для неразрушающего контроля в металлургии (дефектоскопия). Этот крупнейший советский физик-акустик явился родоначальником ультразвуковой интроскопии и автором наиболее часто используемых и совершенно различных по своей сути методов современного звуковидения.

Попытки использования ультразвука в целях медицинской диагностики привели к появлению в 1937 году одномерной эхоэнцефалографии. Однако лишь в начале пятидесятых годов удалось получить ультразвуковое изображение внутренних органов и тканей человека. С этого момента ультразвуковая диагностика стала широко применяться в лучевой диагностике многих заболеваний и повреждений внутренних органов.

Основная идея применения ультразвука в хирургии заключается в сообщении хирургическим инструментам ультразвуковых колебаний, что существенно увеличивает их эффективность, облегчает проведение операций и уменьшает травматические повреждения окружающих тканей. При этом выделяется несколько направлений: ультразвуковое резание мягких ткачей; ультразвуковая резка, сверление, трепанация, сварка и наплавка костной ткани: ультразвуковая эндартерэктомия (проведение восстановительных операций на пораженных атеросклерозом крупных сосудах).

Можно выделить две основные области использования ультразвука в оперативной хирургии. Это инструментальная ультразвуковая хирургия и локальные разрушения в глубине тканей с помощью фокусированного ультразвука.

За последние годы в практику стали широко внедряться физические методы хирургического воздействия с применением электрокоагуляционной, лазерной, криогенной и ультразвуковой техники.

Рабочая часть ультразвукового хирургического ножа имеет традиционную форму лезвия скальпеля, соединенного волноводом с магнитострикционным или пьезокерамическим преобразователем. Рабочая часть может иметь и другую форму в соответствии с требованиями выполняемой операции. Амплитуда колебаний режущей кромки в зависимости от поставленной задачи может быть изменена от 1 до 350 мкм, а частота выбирается в диапазоне от 20 до 100 кГц. Как известно, трение покоя больше, чем трение скольжения, поэтому трение между двумя поверхностями уменьшается, если одна из них совершает колебательные движения. Именно поэтому работа с ультразвуковыми инструментами требует от хирурга меньших усилий.

Характер разрушения тканей под действием ультразвукового хирургического инструмента зависит от строения его рабочей части, амплитуды и направления колебании. Зависит он и от вязкоупругих свойств и однородности ткани. ультразвук хирургия диагностика техника

При рассечении мягких тканей ультразвуковым ножом, лезвие которого совершает продольные ультразвуковые колебания, взаимодействует с тканью лишь кромка лезвия, обеспечивая процесс микрорезания, существенно усиливающего режущие свойства инструмента. Кроме того, у кромки лезвия колеблющегося инструмента выделяется теплота, локально повышающая температуру ткани и обусловливающая гемостатический эффект в результате термокоагуляции крови.

Так, применение ультразвукового скальпеля, амплитуда колебаний кромки которого лежит в интервале 15...20 мкм при частоте 44 кГц, в 6-8 раз уменьшает кровотечение из мелких и средних сосудов, в 4-6 раз снижает усилие резания, а также существенно облегчает строго послойное разделение кожи, подкожной жировой клетчатки и рубцовоизмененного хряща. Очевидно, что если на инструмент наложены лишь продольные колебания, то его воздействие на стенки раневого канала минимально.

Для разрушения некоторых патологических образований используют специальные волноводы -- дезинтеграторы, рабочий конец которых, помимо продольных, совершает и поперечные колебания. Такие инструменты оказывают существенное влияние па окружающие ткани и по мере введения инструмента разрушают их.

Ультразвуковые инструменты обладают явными преимуществами перед электро- или криохирургическими, так как не прилипают к ткани и поверхности раневого канала и не вызывают дополнительных травм. Ультразвуковой скальпель не уступает в ряде случаев и лазерному хирургическому инструменту, так как, ощущая сопротивление ткани при операции, хирург лучше контролирует процесс ее рассечения.

В зависимости от поставленной задачи ультразвуковые инструменты могут иметь самые разные размеры и форму.

Применительно к операциям, проводимым на брюшной полости пациента эффективность достигается благодаря применению методов лапароскопической (от греч. lapara -- пах, чрево и skopeo -- смотрю) хирургии. Для лапароскопических операций используются лапароскоп и специальные инструменты, которые вводятся по троакарам через отдельные миниатюрные проколы (не более 1 см) в брюшной полости. Небольшие проколы, производимые при лапароскопических хирургических вмешательствах, практически не травмируют мышечную ткань.

Одной из основных и наиболее важной частью ультразвукового комплекса для лапароскопии является ультразвуковая колебательная система (УЗКС), преобразующая электрические колебания ультразвуковой частоты в механические. От того, насколько эффективно она осуществляет свою функцию, зависят такие эксплуатационные параметры аппарата как: максимальная амплитуда ультразвуковых колебаний, допустимое время непрерывной работы, разогрев колебательной системы и рабочих инструментов.

Колебательная система, как правило, строится по полуволновой конструктивной схеме, сочетающей в себе электроакустический преобразователь (пьезоэлектрический) и концентратор.

Для осуществления ультразвукового резания и коагуляции необходимым и достаточным условием является достижение амплитуды колебаний порядка 150 мкм. К сожалению, при таком значении амплитуды колебаний велика вероятность возникновения изгибных колебаний. При этом наблюдается разрушение рабочего инструмента.

Для выполнения различного рода лапароскопических операций применяется несколько сменных рабочих инструментов (до 10 шт.), которые отличаются длиной, диаметром и формой окончаний. Длина всех сменных рабочих инструментов выбиралась из условий обеспечения кратности половине длины волны продольных ультразвуковых колебаний в материале инструмента.

Бактерицидный эффект позволяет использовать простую и оригинальную методику самостерилизации хирургического инструмента. Рабочую часть инструмента опускают в раствор дезинфектанта и включают генератор. Ультразвуковые колебания вызывают интенсивные микротечения жидкости вблизи инструмента, очищающие его поверхность. Кроме того, увеличивая проницаемость мембран клеток болезнетворных бактерий по отношению к дезинфицирующему веществу, ультразвук повышает эффективность его действия, что позволяет в 10-100 раз снизить концентрацию этого вещества в растворе. Если, например, лезвие ультразвукового скальпеля погрузить в бульон со стандартной культурой гемолитического плазмокоагулирующего стафилококка, после этого включенный инструмент подвергнуть двухминутной самостерилизации в разбавленном (0,025...0,5%) растворе диоцида, выключить его и привести в соприкосновение с поверхностью кровяного агара, то число выросших микробных колоний окажется тем меньшим, чем выше была амплитуда колебаний инструмента

На практике для стерилизации ультразвуковой инструмент, колеблющийся с максимальной амплитудой, опускают на несколько секунд в сосуд с любым дезинфицирующим раствором, например, перикиси водорода.

Заключение

В настоящее время ультразвуковой метод нашел широкое диагностическое применение и стал неотъемлемой частью клинического обследования больных. По абсолютному числу ультразвуковые исследования в плотную приблизились к рентгенологическим. Одновременно существенно расширились и границы использования эхографии. Во- первых, она стала применятся для исследования тех объектов, которые ранее считались недоступными для ультразвуковой оценки (легкие, желудок, кишечник, скелет), так что в настоящее время практически все органы и анатомические структуры могут быть изучены сонографически. Во-вторых, в практику вошли интракорпоральные исследования, осуществляемые введением специальных микродатчиков в различные полости организма через естественные отверстия, пункционным путем в сосуды и сердце либо через операционные раны. Этим было достигнуто значительное повышение точности ультразвуковой диагностики. В-третьих, появились новые направления использования ультразвукового метода. Наряду с обычными плановыми исследованиями, он широко применяется для целей неотложной диагностики, мониторинга, скрининга, для контроля за выполнением диагностических и лечебных пункций.

Приложение

Ультразвук - звуковые волны имеющие частоту выше воспринимаемых человеческим ухом, обычно, под ультразвуком понимают частоты выше 20 000 Герц.

Ультразвуковая диагностика - метод исследования человеческих органов, основанный на способности ультразвуковых волн проникать сквозь ткани, показывая картину состояния организма на экране.

Размещено на Allbest.ru

...

Подобные документы

    Применение ультразвука с лечебной целью. Механическое, термическое, физическое воздействие ультразвука. Методы ультразвуковой терапии: контактный, ультрафонофорез, рефлексотерапия, интракорпоральный, эндоскопический. Аппараты для ультразвуковой терапии.

    презентация , добавлен 05.02.2015

    Способы получения и свойства ультразвука. Изображение внутренних органов человека с помощью ультразвуковых волн. Ультразвуковые генераторы (медицинский, школьный). Свойство отражения ультразвуковой волны в медицинской ультразвуковой диагностике.

    контрольная работа , добавлен 03.02.2011

    Определение и характеристика ультразвука, его основные источники. Действие ультразвука на биологические объекты. Применение ультразвука в диагностике и терапии. Частотная граница между звуковыми и ультразвуковыми волнами. Ультразвуковой свисток Гальтона.

    презентация , добавлен 28.04.2016

    Физические характеристики звука. Понятие ультразвука и принцип действия электромеханических излучателей. Медико-биологичесике приложения ультразвука. Методы диагностики и исследования: двумерная и доплеровская эхоскопия, визуализация на гармониках.

    презентация , добавлен 23.02.2013

    Биологические и физические характеристики ультразвука. Механизмы физиологического и лечебного действия (механический, тепловой и физико-химический факторы). Аппаратура, методика и техника ультразвуковой терапии. Показания и противопоказания к лечению.

    реферат , добавлен 27.04.2009

    Адаптация организма ребенка к условиям внеутробной жизни. Современные методы ультразвуковой диагностики. Современные ультразвуковые приборы. Применение ультразвуковой диагностики. Методика проведения нейросонографии. Дисплазия тазобедренного сустава.

    презентация , добавлен 18.09.2013

    История сердечно-сосудистой хирургии как отрасли хирургии и медицинской специальности, ее подходы к решению проблем в период первых открытий. Зарождение кардиохирургии как хирургического направления в России. Открытия в области хирургии сердца и сосудов.

    реферат , добавлен 22.12.2013

    Характеристика и назначение ультразвуковой терапии, ее физическое обоснование и специальная аппаратура. Методика и техника проведения процедур и механизм действия фактора на организм. Показание и противопоказания к использованию ультразвуковой терапии.

    реферат , добавлен 23.11.2009

    Статистические данные заболеваемости остеопорозом. Опорно-двигательный аппарат человека: остеология, классификация костей. Исследование синовиальной жидкости. Артрография и трепанобиопсия. Радионуклидная диагностика. Биологическое действие ультразвука.

    курсовая работа , добавлен 16.12.2012

    Сущность ультразвукового метода как принципиально нового способа получения медицинского изображения, его разработка и внедрение в практику. Физические свойства и биологическое действие ультразвука. Преимущества эхографии, ее безопасность, виды датчиков.

Поиск и разработка методов снижения травматичности, кровопотери и болевых ощущений при хирургических операциях, методов, позволяющих ускорить заживление послеоперационных ран и рассасывание рубцов, а также методов, облегчающих труд хирурга-оператора, - важные задачи современной хирургии, решению которых способствует применение ультразвука.

Можно выделить две основные области использования ультразвука в оперативной хирургии. Это инструментальная ультразвуковая хирургия и локальные разрушения в глубине тканей с помощью фокусированного ультразвука.

ИНСТРУМЕНТАЛЬНАЯ УЛЬТРАЗВУКОВАЯ ХИРУРГИЯ

За последние годы в практику стали широко внедряться физические методы хирургического воздействия с применением электрокоа- гуляционной, лазерной, криогенной и ультразвуковой техники.

Принцип действия ультразвуковых инструментов

Рабочая часть ультразвукового хирургического ножа имеет традиционную форму лезвия скальпеля, соединенного волноводом с магни- тострикционным или пьезокерамическим преобразователем. Рабочая часть может иметь и другую форму в соответствии с требованиями выполняемой операции. Амплитуда колебаний режущей кромки в зависимости от поставленной задачи может быть изменена от 1 до 350 мкм, а частота выбирается в диапазоне от 20 до 100 кГц. Как известно, трение покоя больше, чем трение скольжения, поэтому трение между двумя поверхностями уменьшается, если одна из них совершает колебательные движения. Именно поэтому работа с ультразвуковыми инструментами требует от хирурга меньших усилий.

Характер разрушения тканей под действием ультразвукового хирургического инструмента зависит от строения его рабочей части, амплитуды и направления колебаний. Зависит он и от вязкоупругих свойств и однородности ткани.

При рассечении мягких тканей ультразвуковым ножом, лезвие которого совершает продольные ультразвуковые колебания, взаимодействует с тканью лишь кромка лезвия, обеспечивая процесс микрорезания, существенно усиливающего режущие свойства инструмента. Кроме того, у кромки лезвия колеблющегося инструмента выделяется теплота, локально повышающая температуру ткани и обусловливающая гемостатический эффект в результате термокоагуляции крови.

Так, применение ультразвукового скальпеля, амплитуда колебаний кромки которого лежит в интервале 15...20 мкм при частоте 44 кГц, в 6-8 раз уменьшает кровотечение из мелких и средних сосудов, в 4-6 раз снижает усилие резания, а также существенно облегчает строго послойное разделение кожи, подкожной жировой клетчатки и рубцовоизмененного хряща. Очевидно, что если на инструмент наложены лишь продольные колебания, то его воздействие на стенки раневого канала минимально.

Для разрушения некоторых патологических образований используют специальные волноводы - дезинтеграторы, рабочий конец которых помимо продольных совершает и поперечные колебания. Такие инструменты оказывают существенное влияние на окружающие ткани и по мере введения инструмента разрушают их.

Ультразвуковые инструменты обладают явными преимуществами перед электро- или криохирургическими, так как не прилипают к ткани и поверхности раневого канала и не испытывают дополнительных травм. Ультразвуковой скальпель не уступает в ряде случаев и лазерному хирургическому инструменту, так как, ощущая сопротивление ткани при операции, хирург лучше контролирует процесс ее рассечения.

В зависимости от поставленной задачи ультразвуковые инструменты могут иметь самые разные размеры и форму.

Следует отметить, что при использовании ультразвукового хирургического инструмента наряду с гемостатическим эффектом наблюдаются также анальгетический и бактерицидный и/или бактериостатический эффекты.

Бактерицидный эффект позволяет использовать простую и оригинальную методику самостерилизации хирургического инструмента. Рабочую часть инструмента опускают в раствор дезинфектанта и включают генератор. Ультразвуковые колебания вызывают интенсивные микротечения жидкости вблизи инструмента, очищающие его поверхность. Кроме того, увеличивая проницаемость мембран клеток болезнетворных бактерий по отношению к дезинфицирующему веществу, ультразвук повышает эффективность его действия, что позволяет в 10-100 раз снизить концентрацию этого вещества в растворе. Если, например, лезвие ультразвукового скальпеля погрузить в бульон со стандартной культурой гемолитического плазмокоагулирующего стафилококка, после этого включенный инструмент подвергнуть двухминутной самостерилизации в разбавленном (0,025...0,5 %) растворе диоцида, выключить его и привести в соприкосновение с поверхностью кровяного агара, то число выросших микробных колоний окажется тем меньшим, чем выше была амплитуда колебаний инструмента (табл. 4.1).

Таблица 4.1

Число микробных колоний на агаре через 24 ч после соприкосновения с ультразвуковым инструментом, прошедшим двухмииутную обработку в 0,05%-ном растворе диоцида

Контрольный смыв водой с ультразвукового лезвия, кантамини- рованного Е. coli, уже через 3 ч инкубации дает в питательной среде бурный рост культуры.

Если же загрязненный Е. coli нож, колеблющийся с ультразвуковой частотой и амплитудой 20...30 мкм, поместить на 1...2 мин хотя бы в дистиллированную воду, то последующий смыв с него не даст заметного роста культуры в течение 6...Э ч.

Чем выше амплитуда колебаний, тем более выражен эффект задержки роста культуры. Обработка вибрирующего с амплитудой 30 мкм лезвия в растворе диоцида (0,025 %) в течение 1,5 мин приводит к стерилизации инструмента.

Аналогичные данные были получены при стерилизации в растворе диоцида ультразвуковых инструментов, загрязненных средой, содержащей Вас. micoides.

На практике для стерилизации ультразвуковой инструмент, колеблющийся с максимальной амплитудой, опускают на несколько секунд в сосуд с любым дезинфицирующим раствором, например перекиси водорода.

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

"Аппарат для ультразвуковой терапии: обобщенная структура, применение ультразвука в хирургии"

МИНСК, 2008

Аппарат для ультразвуковой терапии.

Аппарат предназначен для лечения акушерско-гинекологических заболеваний, но применяется также в оториноларингологии, стоматологии, дерматологии и в других областях медицины.

Основные технические данные аппарата: частота ультразвуковых колебаний 2,64 МГц ±0,1%; интенсивность ультразвуковых колебаний регулируется четырьмя ступенями 0,05; 0,2; 0,5 и 1,0 Вт/см 2 ; эффективная площадь большого излучателя 2 см 2 , малого - 0,5 см 2 ; предусмотрен импульсный режим работы при длительности импульсов 2, 4 и 10 мс, частоте следования 50 Гц; питание от сети переменного тока частотой 50 Гц напряжением 220 В ±10%; потребляемая мощность не более 50 ВА; по защите от поражения электрическим током аппарат выполнен по классу I; габаритные размеры 342×274×142 мм; масса (с комплектом) не более 10 кг.

Структурная схема аппарата УЗТ представлена на рисунке 1.

Рисунок 1 – Структурная схема аппарата УЗТ

Генератор высокочастотный создает немодулированные электрические колебания с частотой 2,64 МГц. Усиление мощности этих колебаний происходит в выходном усилителе, к которому подключается один из ультразвуковых излучателей, преобразующий электрические колебания в механические. Модулятор предназначен для получения импульсного режима при трех длительностях импульсов - 2, 4 и 10 мс и постоянной частоте следования - 50 Гц. Блок питания обеспечивает питание постоянным напряжением цепей модулятора и генератора.

Принципиальная электрическая схема аппарата приведена на рисунке 2.

Рисунок 2 – Принципиальная электрическая схема аппарата УЗТ-31

Блоквысокочастотногогенератора (рисунок 3) включает в себя автогенератор, буферный каскад и усилитель.

Автогенератор (транзистор VT 1 ) собран по осцилляторной схеме с кварцевой стабилизацией. С выхода автогенератора высокочастотное напряжение подается на буферный каскад, представляющий собой эмиттерный повторитель (транзистор VT 3 ). В эмиттерной цепи повторителя включены контакты кнопочного переключателя S 1 , коммутирующие делитель на резисторе 9 и потенциометрах 10 - 13 . Кнопки переключателя выведены на панель управления аппарата ("Интенсивность, Вт/см 2 "). При нажатии одной из кнопок в эмиттерную цепь включается соответствующий потенциометр, с движка которого напряжение через разделительный конденсатор 11 подается на усилитель. С помощью потенциометров 10 - 13 производится регулировка интенсивности на каждой ступени при производстве аппарата или его ремонте.

Усилитель (транзистор VT 4 ) имеет на выходе четырехполюсник (конденсаторы 13 - 17 и катушка индуктивности 3 ), согласующий выходное сопротивление транзистора VT 4 со входным сопротивлением выходного усилителя.

В блоке генератора находится также оконечный каскад (транзистор VT 2 ) импульсного модулятора. Каскад работает в ключевом режиме по параллельной схеме. При подаче на его вход прямоугольного импульса (через контакты 11 - 12 вилки X 1 ) транзистор VT 2 открывается, шунтируя вход буферного усилителя и создавая тем самым паузу в генерации ультразвуковых колебаний.

Рисунок 3 – Принципиальная электрическая схема высокочастотного генератора аппарата УЗТ-31


Обобщенная структура аппарата для ультразвуковой терапии.

Для проведения УЗ-процедуры очевидными являются наличие высокочастотного генератора ч пьезоэлектрических преобразователей, формирующих соответствующие ультразвуковые волны.

Проведение УЗ-процедуры возможно двумя основными способами:

1. При непосредственном контакте УЗ-излучателя с облучаемымучастком тела.

2. Косвенным контактом через иммерсионную жидкость, осуществляемым с помощью водяной панны или водяной подушки (пузыря из тонкой резины, наполненного водой).

При использовании первого способа необходимо исключить наличие воздушной прослойки между излучателем и поверхностью тела, поскольку даже тончайший слой воздуха приведет, практически, к полному отражению УЗ-волны от поверхности тела. Поэтому, перед сеансом поверхность кожи облучаемого участка тщательно смазывается вазелиновым маслом или специальной смазкой на основе парафинов.

При использовании косвенного контакта может использоваться как непрерывный, так и импульсный режим излучения, при неподвижном и подвижном излучателях.

При использовании водяной ванны можно производить облучение как прямым, так и наклонным лучом, что удобно при облучении суставов и участков тела с неровной поверхностью.

Аппараты УЗ-терапии могут быть стационарными и портативными. универсальными и специализированными. Типовая структура терапевтического ультразвукового аппарата представлена на рисунке 4.

Автогенератор АГ генерирует в непрерывном режиме колебания УЗ-частоты. Через модулятор М (управляемый ключ) У3-колебания передаются на предварительный усилитель ПУ со ступенчатой регулировкой коэффициента усиления и далее. через выходной усилитель, на излучатель ИЗ и индикатор ИНД, показывающий наличие переменного сигнала УЗ-частоты на выходе усилителя. Модулятор управляется генератором импульсов регулируемой длительности ГИ. Все регулировки осуществляются с помощью пульта управления снабженного процедурными часами ПЧиПУ, которые отключают блок питания БП по истечении установленного времени длительности процедуры.


Рисунок 4 – Структурная схема аппарата ультразвуковой терапии

Перед сеансом УЗ-терапии производят проверку исправности аппарата. Простейший способ проверки наличия генерации ультразвука состоит в том. что излучатель окунают в стакан с водой и. при наличии колебаний, наблюдают эффект дегазации (выделения пузырьков воздуха). С повышением интенсивности излучения газовыделение возрастает.

Периодически проводят проверку градуировки шкалы интенсивности генерируемого ультразвука. Для этой цели Используются специальные измерители мощности ультразвука, например, типа ИМУ-2 (3).

Для предохранения рук оператора от воздействия ультразвука, он должен работать в тонких нитяных перчатках, поверх которых надеты резиновые. Сохраняемый пол слоем резины слой воздуха отражает УЗ-колебания. предохраняя руки от воздействия ультразвука.

В таблице 1 приведены некоторые основные характеристики отечественных терапевтических УЗ-аппаратов.


Таблица 1 Характеристики отечественных терапевтических УЗ – аппаратов.

Интересным представляется воздействие ультразвуковыми волнами на биологически активные точки (БАТ) с целью достижения определенных терапевтических эффектов, называемое фонотерапией. Фонотерапия осуществляется с помощью терапевтических УЗ-аппаратов, позволяющих генерировать ультразвук малой интенсивности (0,05Вт/см в кв) и снабженных излучателями с малой площадью активной, поверхности (от 0,2 до 1см в кв), например, "ЛОР-3", "УЗТ-102", "УЗ-Т10" и др.

Применение ультразвука в хирургии.

Основная идея применения ультразвука в хирургии заключается в сообщении хирургическим инструментам ультразвуковых колебаний, что существенно увеличивает их эффективность, облегчает проведение операций и уменьшает травматические повреждения окружающих тканей. При этом выделяется несколько направлений: ультразвуковое резание мягких ткачей; ультразвуковая резка, сверление, трепанация, сварка и наплавка костной ткани: ультразвуковая эндартерэктомия (проведение восстановительных операций на пораженных атеросклерозом крупных сосудах).

Метод ультразвуковой резки мягких тканей основан на том, что на лезвие режущего инструмента, которому хирургом сообщается поступательное движение, накладываются продольные ультразвуковые колебания с частотой, лежащей в пределах 22 - 44кГц. с амплитудой не более 45мкм. Под действием УЗ-колебаннй. налагаемых на инструмент, скорость относительных продольных перемещении увеличивается, относительно поступательного перемещения лезвия, в несколько раз. При этом, за счет разрушении под воздействием кавитации клеточной структуры прилегающих к лезвия слоев ткани, сухое трение переходит в полусухое или даже жидкостное. Это приводит к существенному уменьшению как нормального, так и тангенциального усилия резания. Ультразвуковые колебания возбуждаются магнитострикторрм и с помощью концентратора передаются к режущему инструменту. Магнитостриктор изготовляют либо из ферритового броневого цилиндрического магнптопровода, в полость которого закладывается обмотка, либо набирается из Ш - образных пластин из никелевого сплава, на центральный стержень которых наматывается обмотка. При перемагннчивании материала возникает явление магнитострикции, вследствие которого продольные размеры стержней колеблются с частотой перемагничивающего тока. Чтобы избежать удвоения частоты механических колебаний сердечник магнитостриктора подмагничивается постоянным током практически до насыщения.

В хирургии всегда существовал ряд вопросов и задач, которые нужно было решить. Это снижение травматичности операций, уменьшение кровопотерь, ускорение заживление, разработка новых, более прогрессивных методов и др. Во многом решить эти задачи помог ультразвуковой метод.

Существует две основные области использования ультразвука в хирургии:

  • Инструментальная хирургия. Наложение ультразвука на операционные инструменты (пилы, лезвия и др.)
  • Локальные разрушения. Фокусированный ультразвук способен проникать глубоко в ткани, уничтожая различные образования.

Инструментальная хирургия

На рабочую поверхность инструмента (например, скальпель), которая соединена с преобразователем волноводом, накладывается ультразвук . Амплитуда колебаний волн на режущей части инструмента может составлять от 1 до 365 мкм (в зависимости от конкретного назначения инструмента и потребностей операции), частота - от 20 до 100 кГц. Ультразвуковые колебания уменьшают трение между тканями и лезвием, благодаря чему специалист-хирург затрачивает меньше усилий, а операция проходит более быстро и гладко.

Как правило, при рассечении мягких тканей с ними взаимодействует только кромка режущей части - происходит, так называемое, микрорезание. Также от кромки выделяется тепло, создающее гемостатический эффект. Это все способно во многом облегчить процесс оперирования, что и обуславливает распространение ультразвуковых инструментов в хирургии.

Ультразвуковые инструменты отличаются по своему назначению, амплитуде колебаний волн и другим характеристикам. Основными считаются:

  1. Скальпель (хирургический нож) . Он помогает расслаивать мягкие ткани, отделяя патологические образования и структуры от нормальных. Как правило, это инструмент применяется при:
    • Пластических операциях
    • Удалении различных опухолей
    • Иссечении рубцов
    • Вскрытии очагов воспаления

      Это очень эффективный инструмент, позволяющий осуществлять вышеперечисленные действия с минимальным стрессом для пациента и с применение минимальных усилий со стороны врача.

  2. Пила . Этот инструмент имеет режущую кромку, на которой располагаются зубья (шаг - 1 мм). Пила используется для:
    • Рассечения костей, особенно расположенных в труднодоступных для хирурга местах, рядом с кровеносными сосудами и нервами
    • Трепанации черепа
    • Ламинэктомии
    • Рассечения костей ребер, грудины, ключиц, стоп кистей, лицевого отдела черепа

      Ультразвуковая пила не повреждает оставшиеся части тканей, не нагревает, не прижигает и не разминает их. После использования этого инструмента перестройка костных трансплантатов и образование костной мозоли осуществляются в разы быстрее, чем после использования обычных приборов. Использование ультразвуковых пил обеспечивает очень высокую точность моделирования трансплантатов.

  3. Ультразвуковой аппарат для "сварки" костей . Этот аппарат позволяет:
    • Очень быстро и точно соединять стромы фрагментов
    • Осуществлять процессы "сваривания" коллагеновых волокон различных фрагментов
    • В очень короткие сроки полимеризировать мономеры
    • Осуществлять практически мгновенную диффузию мономеров

      Аппарат, с наложенным на него ультразвуком, позволяет хирургам осуществлять все вышеперечисленные процессы во много раз быстрее, что сокращает расходы на операции, минимизирует труд медиков, уменьшает сроки выздоровления пациентов.

Помимо этих трех инструментов существуют целые хирургические комплексы. Они позволяют воздействовать только на твердые ткани, оставляя мягкие нетронутыми и, соответственно, не нанося им никаких повреждений.

Также с помощью аппаратов, с наложенным на них ультразвуком, можно "склеивать" сосуды, удалять тромбы, удалять катаракту глаза и производить другие оперативные действия.

Вызов локальных разрушений

Открытие этого способа применения ультразвука в хирургии позволило проводить некоторые операции без единого нарушения целостности живых тканей. Волны фокусируются в одном месте (например, на опухоли), постепенно уничтожая патологическое образование. Процесс удаления выводится на изображение томографа, что позволяет врачу полностью следить за операцией.

Такие операции полностью исключают повреждение живых тканей, образование костных сколов/обломков, уничтожение кровеносных сосудов и повреждение нервов. Ультразвук позволяет в разы снижать травматичность хирургических процедур. При этом время, затраченное на операцию и восстановление, сокращается.

Сегодня ультразвук применяется не только в диагностике. Открытие возможности применение этого явления в других областях медицины позволило существенно продвинуть вперед хирургию и решить многие ее вопросы.

Существуют два основных способа применения ультразвука в хирургии. В первом из них используется способность сильно фокусированного пучка ультразвука вызывать локальные разрушения в тканях – это ультразвуковой скальпель. Операции проводились на мозге, печени, почках, глазе.

Во втором случае механические колебания ультразвуковой частоты накладываются на хирургические инструменты типа лезвий, пил, механических наконечников. Такие инструменты называются ультразвуковая пила, ультразвуковая бормашина.

  1. Ультразвук в физиотерапии.

Одно из наиболее распространенных применений ультразвука в физиотерапии – это ускорение регенерации тканей и заживления ран. Рубцовая ткань, сформировавшаяся при воздействии ультразвука, прочнее и эластичнее по сравнению с "нормальной" рубцовой тканью.

Лечение трофических язв.

Ускорение рассасывания отеков.

Заживление переломов, ускорение выздоровления.

4.2. Светолечение.

Светолечение - это метод физиотерапии, заключающийся в дозированном воздействии на организм больного инфракрасного, видимого или ультрафиолетового излучения.

4.3. Аэроионотерапия отрицательными зарядами электричества.

Исследования показали, что наиболее благотворно влияют на здоровье легкие отрицательные ионы кислорода воздуха. Аэроионы влияют на работу нервной системы, кровяное давление, тканевое дыхание, обмен веществ, температуру тела, кроветворение, при их воздействии изменяются физико-химические свойства крови, содержание сахара в крови, электрокинетический потенциал эритроцитов.

Положительные аэроионы действуют в противоположном направлении.

Давно замечено, что в душных непроветриваемых помещениях человек испытывает различного рода дискомфортные состояния: вялость, усталость, потерю аппетита, головную боль, бессонницу, слабость, головокружение, ослабление памяти и др. Это приводит к недомоганию, способствует падению защитных сил организма и предрасполагает к его преждевременному изнашиванию и старению. Было обнаружено, что в подобных помещениях имеет место избыток положительных и недостаток отрицательных аэроионов. На состоянии организма сказывается также погода: в дождливую туманную погоду, особенно осенью, когда число отрицательных аэроионов в воздухе понижается до минимального предела, чаще возникают инфекционные заболевания, обостряются хронические недуги, ухудшается состояние духа человека; настроение становится меланхоличным. Было установлено, что именно аэроионы положительной полярности оказывают крайне неблагоприятное действие на лиц слабого телосложения, стариков, ревматиков, неврастеников, вызывая у них ощущения боли, слабости, озноба.

Именно большой концентрацией легких отрицательных ионов кислорода обязаны своими лечебными свойствами курорты высокогорья, морского побережья и хвойных лесов. Применение аэроионотерапии в медицинской практике в России применяется с 1959 года. На протяжении ряда лет промышленностью выпускались бытовые аэроионизаторы.

4.4. Электролечение.

Для иллюстрации рассмотрим следующие виды электролечения:

1. Гальванизация.

Гальванизация - применение с лечебной целью непрерывного постоянного

электрического тока малой силы (до 50 мА) и низкого напряжения (30 - 80 В).

2. Ионогальванизация (электрофорез).

Ионогальванизация - метод сочетанного одновременного воздействия на

больного постоянного тока и определенного лекарственного вещества, вводимого в ткани при помощи тока.

3. Фарадизация.

Фарадизация - применение с лечебной целью переменного тока низкой частоты.

4. Дарсонвализация.

Дарсонвализация - применение с лечебной целью переменного тока высокой частоты, высокой интенсивности и небольшой силы.

5. Диатермия.

Диатермия - применение с лечебной целью переменного тока высокой частоты (500000 - 2000000 периодов), небольшого напряжения (сотни вольт) и

большой силы (до нескольких ампер).

6. Франклинизация.

Франклинизация - применение для лечебных целей статического электричества.

7. УВЧ – терапия.

УВЧ - терапия - метод лечения, при котором на определенный участок тела больного воздействуют непрерывным или импульсным электрическим полем ультравысокой частоты.

8. Электропунктура.

Электропунктура - метод воздействия на биологически активные точки

организма определенными видами токов низкой частоты.

9. Магнитотерапия

Магнитотерапия - использование переменного низкочастотного, пульсирующего и постоянного магнитного поля с лечебной целью.

Список используемой литературы

1.Иванов В.А.”Лазер”

2.Кондарев С.В. ”Лечение УВЧ”

3.Самойлов Д.М. “Магнитотерапия”

4.Заявлова С.А. “Светолечение”



error: Контент защищен !!