Роль жиров в питании человека.

Недостаточное количество жиров может способствовать возникновению проблем со здоровьем

Различные виды пищевых жиров, а также белок и углеводы, являются одними из основных питательных веществ.

Для чего необходимы жиры?

Жиры являются одним из важнейших пищевых веществ, необходимых для нормального функционирования организма человека. Они:

  • наряду с углеводами служат важнейшим источником энергии. Один грамм жиров, окисляясь в организме, дает более 9 ккал , в то время как один грамм углевода – около 4 ккал;
  • как энергетические вещества входят в состав клеточных мембран и внутриклеточных образований;
  • входят в состав нервной ткани ;
  • необходимы для хорошей мозговой деятельности, концентрации внимания, памяти;
  • предохраняют кожу от пересыхания, создавая липидный барьер;
  • делают организм более устойчивым к инфекционным заболеваниям , так как жиры поставляют в ткани биологически активные вещества: фосфатиды (фосфолипиды), жирорастворимые витамины (A, D, E и K);
  • способствуют выработке желчи ;
  • служат для выработки гормонов и простагландинов;
  • помогают более эффективно использовать белки и углеводы;
  • являются единственным источником важнейших жирных кислот .

Исходя из вышеизложенного, исключение или резкое ограничение поступления жиров с пищей в организм может нанести вред здоровью человека. Когда человеку нужны запасы энергии, организм накапливает ее в виде наиболее калорийных веществ – жиров. Это своего рода стратегические запасы организма. Именно с помощью этих запасов можно восполнить энергию, затраченную на тяжелую физическую работу и в ходе выполнения физических упражнений. Кроме того, рекомендуется больше употреблять жирной пищи в холодное время года, потому что она препятствует переохлаждению организма.

Недостаточное количество жиров может способствовать возникновению проблем со здоровьем, в том числе:

  • сухая, чешуйчатая кожа;
  • сухие, тусклые волосы или выпадение волос;
  • замедление роста;
  • низкая устойчивость к простудным и инфекционным заболеваниям;
  • плохое заживление ран;
  • проблемы с настроением, депрессия, отсутствие внимания.

Виды холестерина

Существует распространенное мнение, что холестерин чрезвычайно вреден для здоровья и является, чуть ли не основным показателем состояния нашего здоровья. Однако это не так. Он играет большую роль для повышения проницаемости клеточных мембран, для выработки в коже витамина D, для образования гормонов надпочечниками.

Важно помнить то, что существуют разные виды холестерина. Так, взяв одну пробу крови на анализ, можно говорить:

  • об общем уровне холестерина в организме человека (у молодого мужчины он не должен превышать 2 г на 1 литр крови);
  • ЛНП-холестерин (липопротеин с низкой плотностью). Его еще называют «плохим» холестерином, потому что имеет тенденцию откладываться на стенках артерий, что может привести к их закупорке (нормой для молодого мужчины является не более 1,3 г на 1 л);
  • ЛВП-холестерин (липопротеин с высокой плотностью). Он же считается «хорошим» холестерином, потому что он наоборот очищает стенки артерий от жировых скоплений. Поэтому, чем выше содержание этого вида холестерина, тем ниже риск сердечно-сосудистых заболеваний . В идеале его уровень у мужчин не должен быть ниже 0,45г/л.

Жирные кислоты

Жиры, употребляемые в пищу, представляют собой сложный пищевой продукт, содержащий липиды, воду, минеральные соли и витамины. Однако главной составной частью жиров являются липиды (от греч. l?pos - жир). Это большой класс химических веществ, основу которых составляют триглицериды, которые в ходе пищеварительного процесса трансформируются в жирные кислоты.

Жирные кислоты можно разделить на заменимые и незаменимые жирные кислоты. Заменимые жирные кислоты вырабатываются в нашем организме, а незаменимые поступают с продуктами питания, содержащими пищевые жиры.

Типы пищевых жиров

Существуют три типа жирных кислот:

1) насыщенные;

2) мононенасыщенные;

3) полиненасыщенные.

Все природные жиры – это смеси названных жиров. Поэтому в любом «полезном» жире есть и «плохие» жиры. Обычно по преобладающему типу пищевого жира в их составе классифицируются жирные кислоты.

Насыщенные жирные кислоты содержатся во всех видах мяса, колбасных изделиях, коже птицы, цельномолочных продуктах, сливочном масле и сыре, яичных желтках, растительных маслах (пальмовое и кокосовое).

Употребление этих продуктов вызывает повышение общего уровня холестерина и «плохого» холестерина, что способствует отложению жира на стенках сосудов, уменьшая их проходимость.

Мононенасыщенные жирные кислоты являются заменимыми жирными кислотами. Они содержатся в оливковом, рапсовом, арахисовом масле, орехах кешью, миндале, большинстве других орехов, масле авокадо, гусиной печени, какао. Они понижают уровень общего холестерина и уровень «плохого» холестерина. Кроме того, они могут даже повысить уровень «хорошего» холестерина. Поэтому эти продукты желательно включать в свой ежедневный рацион.

Полиненасыщенные жирные кислоты по своему происхождению могут быть растительные (фундук, миндаль, подсолнечник, лен, соя, рапс, арахис, кукуруза, маргарин растительный, ореховое масло) и животные (лосось, тунец, рыбий жир).

Они способствуют снижению общего холестерина, но, к сожалению, снижая и «хороший» холестерин.

Полиненасыщенные жирные кислоты делятся на две подгруппы:

  • линолевая кислота (Омега-6);
  • альфа-линолевая кислота (Омега-3).

Эти две кислоты, столь же необходимы организму, как и витамины. Они являются незаменимыми жирными кислотами, потому что они не могут быть синтезированы в организме.

Линолевая кислота (Омега-6). Недостаток этой кислоты сразу сказывается на состоянии клеток кожи, слизистых оболочек, эндокринных желез, может привести также к поражениям сосудов.

Омега-6 содержится в кукурузном и подсолнечном масле, в орехах, семечках, хлопковом и соевом масле. В организме взрослого здорового человека имеется двухмесячный запас этого вида жиров. Однако пожилые люди должны ежедневно его вводить вместе с пищей.

Альфа-линолевая кислота (Омега-3). Недостаток данной кислоты приводит к ухудшению состояния клеточных мембран, особенно клеток мозга, что выражается в расстройствах памяти, в снижении способности к обучению. Кроме того, поражается сетчатка глаз, что влечет за собой резкое ухудшение зрения.

Содержится кислота в рыбе и рыбьем жире, льняном и рапсовом масле, масле грецких орехов, масле зародышей пшеницы, фундуке, миндале и сливочном масле . Среднесуточная норма для человека – 2 г в день. опубликовано

Роль жиров в питании

Пищевые жиры являются источником энергии, а также поставляют материал для биосинтеза липидных структур в организме (в том числе мембран клеток). Жиры обладают высокой энергетической ценностью: при сгорании 1 г жира выделяется 37,7 кДж (9 ккал) тепла. Между тем при сгорании 1 г белка или углеводов выделяется только 16,75 кДж (4 ккал).

Жиры бывают животного и растительного происхождения. Они различаются по физическим свойствам и составу. Животные жиры представляют собой твердые вещества, в состав которых входит большое количество насыщенных жирных кислот с высокой температурой плавления. Продукты животного происхождения, помимо жиров, содержат глицерин и жирные кислоты, стеарины, фосфолипиды и жирорастворимые витамины, активно участвующие в физиологических процессах.

Наиболее высокое содержание жиров отмечается в следующих продуктах животного происхождения: свиное сало (90–92% жира), жирная свинина (49%), колбасы (20–40%), сметана (30%), сливочное масло (72–82%), сыры (15–30%).

В отличие от них растительные жиры содержат большое количество полиненасыщенных жирных кислот, которые относятся к категории незаменимых факторов питания. Продукты растительного происхождения, содержащие наиболее высокий процент жиров, следующие: растительные масла (99,9% жира), овсяная (6,1%) и гречневая (3,3%) крупы, орехи (53–65%).

Главный компонент жиров – жирные кислоты. Существует более 40 видов жирных кислот. Основным энергетическим материалом для организма служат насыщенные жирные кислоты – такие, как пальмитиновая, стеариновая и др. Эти жирные кислоты в наибольшем количестве присутствуют в животных жирах. Так, в говяжьем жире содержится около 25% пальмитиновой кислоты, 20% стеариновой; в свином жире – соответственно 25% и 13%, в масле сливочном – 25% пальмитиновой, 7% стеариновой и 8% миристиновой. Однако не стоит усердствовать в потреблении жиров, следует соблюдать надлежащую диету, поскольку избыток насыщенных жирных кислот может привести к нарушению обмена веществ, а также к повышению содержания холестерина в крови. При хроническом гастрите требуется соблюдать строгую диету.

Желательно употреблять в пищу жиросодержащие продукты как животного, так и растительного происхождения в рациональной пропорции. Большой пищевой ценностью и высокими вкусовыми качествами обладает сливочное масло, в котором содержится легкоусвояемый организмом ретинол.

Употребление только растительных жиров может вызвать недостаточность жизненно необходимых пищевых веществ. Недостаток жиров в питании приводит к тому, что организм постепенно утрачивает способность к правильному использованию его избытков, что в дальнейшем становится причиной развития атеросклеротического процесса. Организм становится менее стойким к внешним раздражителям.

Суточная норма потребления жиров для взрослого человека:

– 1/3 растительных жиров от общей суточной нормы питания;

– 2/3 животных жиров от общей суточной нормы питания.

Для пожилых людей при повышенном содержании холестерина в сыворотке крови потребление жиров должно соотноситься с общей суточной нормой питания как 1: 1.

При хроническом гастрите рекомендуется использовать растительные масла с салатами, винегретами, закусками (не острыми) и для приготовления диетических соусов. В таком виде растительные жиры лучше усваиваются организмом. Сало и жирное мясо исключаются из рациона питания, их можно заменить нежирными сортами мяса и большим количеством жиров растительного происхождения.

Из книги Общая гигиена автора Юрий Юрьевич Елисеев

36. Роль белков в питании Белок, являясь важнейшим компонентом питания, обеспечивающим пластические и энергетические нужды организма,Белок является главной составной частью пищевого рациона, определяющей характер питания.На фоне высокого уровня белка отмечается

Из книги Общая гигиена: конспект лекций автора Юрий Юрьевич Елисеев

42. Минеральные вещества. Роль и значение в питании человека Минеральные вещества участвуют во всех физиологических процессах:1) пластических – в формировании и построении тканей;2) в поддержании кислотно-щелочного равновесия (кислотность сыворотки не более 7,3–7,5), в

Из книги Лечебное питание при хроническом гастрите автора Алла Викторовна Нестерова

43. Минеральные вещества. Роль и значение в питании человека Магния в организме содержится до 25 г. Однако хорошо известна его роль в процессе углеводного и фосфорного обмена. Магний нормализует возбудимость нервной системы, обладает антиспастическим и сосудорасширяющим

Из книги Аминокислоты - строительный материал жизни автора Леонид Остапенко

ЛЕКЦИЯ № 10. Значение белков и жиров в питании человека Биологическая роль белков Белок, являясь важнейшим компонентом питания, обеспечивающим пластические и энергетические нужды организма, справедливо назван протеином, показывающим первую его роль в питании. Роль

Из книги Тянь-ши: Золотые рецепты исцеления автора Алексей Владимирович Иванов

Значение жиров в питании здорового человека Жиры относятся к основным питательным веществам и являются обязательным компонентом в сбалансированном питании.Физиологическое значение жира весьма многообразно. Жиры является источником энергии, превосходящей энергию

Из книги Лечебное питание при гипертонии автора Наталья Викторовна Верескун

Минеральные вещества. Роль и значение в питании человека Ф. Ф. Эрисман писал: «Пища, не содержащая минеральных солей и удовлетворительная по другим показателям, ведет к медленной голодной смерти, так как обеднение организма солями неминуемо ведет к расстройству

Из книги Система снижения веса «25 за 5». Открыть матрешку автора Оксана Филонова

Роль витаминов в правильном питании При хроническом гастрите недостаточное поступление витаминов в организм человека может повлечь серьезные осложнения заболевания. При определенных формах гастрита рекомендуется дополнительный прием витаминов А, В6, В12, РР, С и

Из книги Диетология: Руководство автора Коллектив авторов

Роль белков в питании Белки играют в питании человека чрезвычайно важную роль, поскольку являются самой главной составной частью клеток всех органов и тканей нашего организма. Белки, содержащиеся в пище, необходимы для построения новых клеток и тканей. Особенно в белках

Из книги Скажи, что ты ешь, и я скажу, сколько ты проживешь! автора Игорь Витальевич Подопригора

Роль углеводов в питании Углеводы являются эссенциальными компонентами рациона питания. Они определяют основной энергетический гомеостат организма, необходимы для биосинтеза многих углеродсодержащих полимеров. Углеводы используются в организме в качестве источника

Из книги автора

Роль минеральных веществ в питании Минеральные вещества играют не меньшую роль в рациональном питании, чем жиры, белки и углеводы, а также витамины. Дефицит минеральных веществ в организме человека вызывает ряд специфических нарушений, которые в конечном итоге могут

Из книги автора

Насколько важна роль белка в здоровом питании? Белки являются главным, наиболее ценным и незаменимым компонентом питания. Это связано с той огромной ролью, которую они играют в процессах развития и жизни человека. Белки являются основой структурных элементов и тканей,

Из книги автора

Глава 2 БАДы и их роль в питании человека Невозможно отрицать взаимосвязь между правильным питанием и здоровьем. Именно питание, как считает традиционная китайская медицина, помогает сохранить здоровье, а любое выздоровление, как известно, начинается со специально

Из книги автора

Из книги автора

Как происходит сжигание жиров (липолиз) при низкоуглеводном питании? Наибольшее количество липидов запасается в организме человека в форме простых жиров - триглицеридов. Увеличение их уровня в крови наиболее часто является следствием высокоуглеводного питания,

Из книги автора

Глава 7 Роль микро– и макроэлементов в питании Минеральные вещества наряду с белками, жирами, углеводами и витаминами являются жизненно важными компонентами пищи человека, необходимыми для построения структур живых тканей и осуществления биохимических и

Из книги автора

Роль антиоксидантов в здоровом питании Антиоксиданты – наше спасение от болезней и преждевременного старения. Они содержатся в ягодах, фруктах и сухофруктах, в овощах и злаках, в бобовых культурах и растительных маслах, в специях и орехах, в шоколаде и меде, в продуктах

Роль жиров в питании человека, состав, энергетическая ценность и потребность в них, значение растительных жиров для холестеринового обмена, источники

Роль жиров. Жиры (Ж) представляют собой смесь сложных эфиров, глицерина и различных жирных кислот. Играют важную и разнообразную роль в питании человека:

1) являются источником энергии: 1г дает 9 ккал (37,7 кДж), т.е. в 2,2 раза больше, чем Б. За счет Ж в организм поступает 30% энергии у взрослых и 50% - у детей;

2) это пластический материал, с участием которого создаются клетки тканей и органов;

3) вместе с Ж всасываются Ж-растворимые витамины (А,Д,Е,К) и биологически активные вещества – стеарины (гормоны), ненасыщенные и полиненасыщенные жирные кислоты, фосфатиды;

4) животные Ж – естественные резервуары витаминов А (ретинола) и Д (кальциферола), незаменимых жирных кислот и лецитина;

5) Ж улучшают качество пищи, создают чувство сытости; обезжиренная пища недолго задерживается в желудке - рефлекторно возбуждается пищевой центр и наступает чувство голода.

Состав Ж. Различают Ж полноценные и неполноценные, животного и растительного происхождения, предельные и непредельные. Ценность Ж определяется по температуре их плавления: чем выше, тем труднее они усваиваются.

Полноценные Ж имеют низкую температуру плавления и содержат вит. А и Д и незаменимые жирные кислоты. В основном, это Ж животного происхождения, особенно в молоке и молочных продуктах. Растительные Ж, хотя имеют низкую температуру плавления, не содержат вит. А и Д, поэтому они относятся к неполноценным, хотя биологическая ценность их велика. В них содержатся вит. Е и ненасыщенные жиры, способствующих росту молодого и омоложению взрослого организма, повышению сопротивляемости к инфекциям, улучшающих стенки сосудов (повышая их эластичность), обмен веществ и способность к размножению.

Предельные (насыщенные) жирные кислоты (стеариновая, пальмитиновая) входят в состав жира животных (сала) и птиц. Это источники холестерина в крови, который в норме необходим организму для строительства клеточных оболочек. При нарушении холестеринового обмена он откладывается в стенках сосудов и вызывает их склероз. Чем больше насыщенных жирных кислот в пище, тем нужна выше температура для их плавления, дольше осуществляется переваривание и меньше их усваивается.

Непредельные (ненасыщенные) жирные кислоты (линолевая, арахидовая) находятся в жире рыб и растительных маслах. Они незаменимы для организма, поскольку им не синтезируются, но очень нужны, так как являются активной частью клеточных мембран, снижают содержание холестерина и мешают его отложению в сосудах, тормозят синтез жира, участвуют в образовании гормонов, улучшают состояние кожи и стенок кровеносных сосудов, регулируют жировой обмен в печени - что и определяет необходимость ежедневного употребления растительных масел.

Насыщенные Ж при комнатной температуре пребывают в твердом состоянии, ненасыщенные - в жидком Ненасыщенные кислоты в отличие от насыщенных легко вступают в химические реакции, стимулируют защитные силы организма и повышают устойчивость к инфекционным заболеваниям.

Потребность в Ж составляет 80-100 г в сутки, в т.ч. 25-30 г должно приходиться на растительные масла (особенно, после 30 лет. – 1 ст. ложка в день). В среднем 25 –33% энергетического рациона должно быть обеспечено за счет Ж. Но это зависит, кроме особенностей трудовой деятельности, еще от климатических условий и национальности. В северных широтах за счет Ж должно быть обеспечено до 35% калоража в сутки (в среднем климате – 30%, южном – 25%). Национальность определяет набор ферментов, вырабатываемых организмом, в частности, участвующих в переваривании Ж. Определенные нации не могут полноценно питаться без Ж. (северные народы – тюленьего и рыбьего жира, украинцы - свиного жира, казахи – бараньего жира).

Две жирных кислоты – омега-3 (линоленовая кислота) и омега-6 (линолевая кислота) являются незаменимыми. Каждая клетка нуждается в них для воспроизводства новых клеток. Они влияют на иммунитет, выработку энергии, входят в состав головного мозга и при их дефиците ухудшается способность к обучению и память. Дневная норма незаменимых кислот – 10-20% энергетического рациона. Жир лецитин необходим клеточным мембранам, мышечным и нервным клеткам, из которого они состоят, печени, головному мозгу. Растворяя холестерин в стенках сосудов, лецитин способствует выведению его из организма. Прием лецитина перед едой улучшает расщепление Ж и усвоение Ж-растворимых витаминов.

Источники Ж: животного происхождения – мясо животных и птиц, животные жиры и масла, молоко и молочные продукты. Источники незаменимых жирных кислот – рыба, рыбий жир, соевое масло, куриные яйца; лецитина – яйца, бобовые, печень, икра, пивные дрожжи, злаки, рыба; растительных – масло растительное, льняное, оливковое, кукурузное и т.д. Причем, жареное растительное масло не только окислено и бесполезно, но является источником канцерогенных веществ, поэтому запрещается повторное использование фритюра при жарке пончиков и пирожков. Лучше его употреблять в натуральном виде с овощными блюдами, соусами, заправлять салаты. А жарить лучше на кулинарных жирах, более стойких к нагреванию. Молодые люди могут употреблять свинину, жирную говядину или баранину, но с возрастом потребление жирной пиши должно уменьшаться за счет увеличения белковой и растительной пищи.

  • 3.3.2. Яйца и яичные продукты
  • 3.3.3. Мясо и мясные продукты
  • 3.3.4. Рыба, рыбные продукты и морепродукты
  • 3.4. Консервированные продукты
  • Классификация консервов
  • 3.5. Продукты с повышенной пищевой ценностью
  • 3.5.1. Обогащенные продукты
  • 3.5.2. Функциональные пищевые продукты
  • 3.5.3. Биологически активные добавки к пище
  • 3.6. Гигиенические подходы к формированию рационального ежедневного продуктового набора
  • Глава 4
  • 4.1. Роль питания в возникновении заболеваний
  • 4.2. Алиментарно-зависимые неинфекционные заболевания
  • 4.2.1. Питание и профилактика избыточной массы тела и ожирения
  • 4.2.2. Питание и профилактика сахарного диабета II типа
  • 4.2.3. Питание и профилактика сердечно-сосудистых заболеваний
  • 4.2.4. Питание и профилактика онкологических заболеваний
  • 4.2.5. Питание и профилактика остеопороза
  • 4.2.6. Питание и профилактика кариеса
  • 4.2.7. Пищевые аллергии и другие проявления пищевой непереносимости
  • 4.3. Заболевания, связанные с инфекционными агентами и паразитами, передающимися с пищей
  • 4.3.1. Сальмонеллезы
  • 4.3.2. Листериозы
  • 4.3,3. Коли-инфекции
  • 4.3.4. Вирусные гастроэнтериты
  • 4.4. Пищевые отравления
  • 4.4.1. Пищевые токсикоинфекции и их профилактика
  • 4.4.2. Пищевые бактериальные токсикозы
  • 4.5. Общие факторы возникновения пищевых отравлений микробной этиологии
  • 4.6. Пищевые микотоксикозы
  • 4.7. Пищевые отравления немикробной природы
  • 4.7.1. Отравления грибами
  • 4.7.2. Отравления ядовитыми растениями
  • 4.7.3. Отравления семенами сорных растений, загрязняющих злаковые культуры
  • 4.8. Отравления животными продуктами, ядовитыми по своей природе
  • 4.9. Отравления растительными продуктами, ядовитыми при определенных условиях
  • 4.10. Отравления животными продуктами, ядовитыми при определенных условиях
  • 4.11. Отравления химическими веществами (ксенобиотиками)
  • 4.11.1. Отравления тяжелыми металлами и мышьяком
  • 4.11.2. Отравления пестицидами и другими агрохимическими средствами
  • 4.11.3. Отравления компонентами агрохимикатов
  • 4.11.4. Нитрозамины
  • 4.11.5. Полихлорированные бифенилы
  • 4.11.6. Акриламид
  • 4.12. Расследование пищевых отравлений
  • Глава 5 питание различных групп населения
  • 5.1. Оценка состояния питания различных групп населения
  • 5.2. Питание населения в условиях неблагоприятного действия факторов окружающей среды
  • 5.2.1. Основы алиментарной адаптации
  • 5.2.2. Гигиенический контроль состояния и организации питания населения, проживающего в условиях радиоактивной нагрузки
  • 5.2.3. Лечебно-профилактическое питание
  • 5.3. Питание отдельных групп населения
  • 5.3.1. Питание детей
  • 5.3.2. Питание беременных и кормящих
  • Родильниц и кормящих
  • 5.3.3. Питание лиц престарелого и старческого возраста
  • 5.4. Диетическое (лечебное) питание
  • Глава 6 государственный санитарно-эпидемиологический надзор в области гигиены питания
  • 6.1. Организационные и правовые основы Госсанэпиднадзора в области гигиены питания
  • 6.2. Госсанэпиднадзор за проектированием, реконструкцией и модернизацией пищевых предприятий
  • 6.2.1. Цель и порядок Госсанэпиднадзора за проектированием пищевых объектов
  • 6.2.2. Госсанэпиднадзор за строительством пищевых объектов
  • 6.3. Госсанэпиднадзор за действующими предприятиями пищевой промышленности, общественного питания и торговли
  • 6.3.1. Общие гигиенические требования к пищевым предприятиям
  • 6.3.2. Требования к организации производственного контроля
  • 6.4. Предприятия общественного питания
  • 6.5. Организации продовольственной торговли
  • 6.6. Предприятия пищевой промышленности
  • 6.6.1. Санитарно-эпидемиологические требования к производству молока и молочных продуктов
  • Качественные показатели молока
  • 6.6.2. Санитарно-эпидемиологические требования к производству колбасных изделий
  • 6.6.3. Госсанэпиднадзор за применением пищевых добавок на предприятиях пищевой промышленности
  • 6.6.4. Хранение и транспортировка пищевых продуктов
  • 6.7. Государственное регулирование в области обеспечения качества и безопасности пищевых продуктов
  • 6.7.1. Разделение полномочий органов государственного надзора и контроля
  • 6.7.2. Стандартизация пищевых продуктов, ее гигиеническое и правовое значение
  • 6.7.3. Информация для потребителей о качестве и безопасности пищевых продуктов, материалов и изделий
  • 6.7.4. Проведение санитарно-эпидемиологической (гигиенической) экспертизы продукции в предупредительном порядке
  • 6.7.5. Проведение санитарно-эпидемиологической (гигиенической) экспертизы продукции в текущем порядке
  • 6.7.6. Экспертиза некачественных и опасных продовольственного сырья и пищевых продуктов, их использование или уничтожение
  • 6.7.7. Мониторинг качества и безопасности пищевых продуктов, здоровья населения (социально-гигиенический мониторинг)
  • 6.8. Госсанэпиднадзор за выпуском новых пищевых продуктов, материалов и изделий
  • 6.8.1. Правовая основа и порядок государственной регистрации новых пищевых продуктов
  • 6.8.3. Контроль за производством и оборотом биологически активных добавок
  • 6.9. Основные полимерные и синтетические материалы, контактирующие с пищевой продукцией
  • Глава 1. Основные этапы развития гигиены питания 12
  • Глава 2. Энергетическая, пищевая и биологическая ценность
  • Глава 3. Пищевая ценность и безопасность пищевых продуктов 157
  • Глава 4. Алиментарно-зависимые заболевания
  • Глава 5. Питание различных групп населения 332
  • Глава 6. Государственный санитарно-эпидемиологический надзор
  • Гигиена питания Учебник
  • 2.3. Жиры и их значение в питании

    Жиры (липиды) - это сложные органические соединения, со­стоящие из триглицеридов и липоидных веществ (фосфолипидов, стеринов). В состав триглицеридов входит глицерин и жирные кис­лоты, соединенные эфирными связями. Жирные кислоты явля­ются основными компонентами липидов (около 90 %), именно их структура и характеристики определяют свойства различных ви­дов пищевых жиров. По своей природе пищевые жиры могут быть животными и растительными. По химической структуре раститель­ные масла отличаются от животного жира жирно-кислотным со­ставом. Высокое содержание в растительных маслах ненасыщен­ных жирных кислот придает им жидкое агрегатное состояние и определяет их пищевую ценность. Растительные жиры (масла) находятся при обычных условиях в жидком агрегатном состоянии за исключением пальмового масла.

    Жиры играют значительную роль в жизнедеятельности орга­низма. Они являются вторыми по значимости после углеводов ис­точниками общей энергии, поступающей с пищей. При этом, обладая максимальным среди энергонесущих нутриентов калори­ческим коэффициентом (1 г жира дает организму 9 ккал), жиры даже в небольшом количестве способны придать содержащему их продукту высокую энергетическую ценность. Это обстоятельство имеет не только положительное значение, но и является предпо­сылкой формирования быстрого и относительно не связанного с большими объемами употребляемой пищи избыточного поступ­ления жира и соответственно энергии.

    Физиологическая роль жиров, однако, не сводится лишь к их энергетической функции. Пищевые жиры являются прямыми ис­точниками или предшественниками образования в организме

    Окончание табл. 2.6

    структурных компонентов биологических мембран, стероидных гормонов, кальциферолов и регуляторных клеточных соединений -эйкозаноидов (лейкотриенов, простагландинов). С пищевыми жи­рами в организм поступают также другие соединения липидной природы или липофильной структуры: фосфатиды; стерины; жи­рорастворимые витамины.

    В желудочно-кишечном тракте здорового человека при нормаль­ном уровне поступления жиров усваивается около 95 % их общего количества.

    В составе пищи жиры представлены в виде собственно жиро­вых продуктов (масло, сало и т.п.) и так называемых скрытых жиров, входящих в состав многих продуктов (табл. 2.6).

    Таблица 2.6

    Основные источники пищевых жиров

    Именно продукты, содержащие скрытый жир, являются ос­новными поставщиками пищевых жиров в организм человека.

    Жирные кислоты, входящие в состав пищевых жиров, делятся на три большие группы: насыщенные, мононенасыщенные и по­линенасыщенные (табл. 2.7).

    Таблица 2.7 Основные жирные кислоты пищи и их физиологическое значение

    Окончание табл. 2.7

    * ЛПВП - липопротеиды высокой плотности.

    Насыщенные жирные кислоты. Насыщенные жирные кислоты (НЖК), наиболее представленные в пище, делятся на короткоце-почечные (4... 10 атомов углерода - масляная, капроновая, кап-риловая, каприновая), среднецепочечные (12... 16 атомов углеро­да - лауриновая, миристиновая, пальмитиновая) и длинноце-почечные (18 атомов углерода и более - стеариновая, арахидино-вая).

    Жирные кислоты с короткой длиной углеродной цепи практи­чески не связываются с альбуминами в крови, не депонируются в тканях и не включаются в состав липопротеинов - они способны быстро окисляться с образованием энергии и кетоновых тел. Кро­ме того, они выполняют ряд биологических функций, например масляная кислота служит модулятором генетической регуляции, иммунного ответа и воспаления на уровне слизистой кишечника, а также обеспечивает клеточную дифференцировку и апоптоз. Каприновая кислота является предшественником монокаприна -соединения с антивирусной активностью. Избыточное поступле-

    ние короткоцепочечных жирных кислот может привести к разви­тию метаболического ацидоза.

    Жирные кислоты со средней и длинной углеродной цепью, напротив, включаются в состав липопротеинов, циркулируют в крови, запасаются в жировых депо и используются для синтеза других липоидных соединений в организме, например холестери­на. Кроме того, для лауриновой кислоты показана способность инактивировать ряд микроорганизмов, в частности Helicobacter pylory, а также грибки и вирусы за счет разрыва липидного слоя их биомембран.

    Лауриновая и миристиновая жирные кислоты в наибольшей степени повышают уровень холестерина в сыворотке крови и в силу этого ассоциируются с максимальным риском развития ате­росклероза.

    Пальмитиновая кислота также ведет к повышенному синтезу липопротеинов. Она является основной жирной кислотой, связы­вающей кальций (в составе жирных молочных продуктов) в неу­сваиваемый комплекс, омыляя его.

    Стеариновая кислота, так же как и короткоцепочечные жир­ные кислоты, практически не влияет на уровень холестерина в крови, более того - она способна снижать усвояемость холесте­рина в кишечнике за счет уменьшения его растворимости.

    Ненасыщенные жирные кислоты. Ненасыщенные жирные кис­лоты подразделяют по степени не насыщенности на мононенасы-шенные жирные кислоты (МНЖК) и полиненасыщенные жир­ные кислоты (ПНЖК).

    Мононенасыщенные жирные кислоты имеют одну двойную связь. Основным их представителем в рационе является олеиновая кислота (18:1 п-9 - двойная связь в положении 9-го углеродного атома). Ее основными пищевыми источниками служат оливковое и арахисовое масло, свиной жир. К МНЖК относятся также эруко-вая кислота (22:1 и-9), составляющая "/ 3 от состава жирных кислот в рапсовом масле, и пальмитолеиновая кислота (18:1 «-9), при­сутствующая в рыбьем жире.

    К ПНЖК относятся жирные кислоты, имеющие несколько двойных связей: линолевая (18:2 и-6), линоленовая (18:3 п-3), арахидоновая (20:4 п-6), эйкозапентаеновая (20:5 л-3), докоза-гексаеновая (22:6 п-У). В питании их основными источниками яв­ляются растительные масла, рыбий жир, орехи, семена, бобовые (табл. 2.8). Подсолнечное, соевое, кукурузное и хлопковое масла являются основными источниками линолевой кислоты в питании. В рапсовом, соевом, горчичном, кунжутном масле содержатся зна­чимые количества линолевой и линоленовой кислот, причем со­отношение их различно - от 2:1 в рапсовом, до 5:1 в соевом.

    В организме человека ПНЖК выполняют биологически важ­ные функции, связанные с организацией и функционированием

    биомембран и синтезом тканевых регуляторов. В клетках "P^cxo-дит! сложный процесс синтеза и взаимного превращения I линЬлевая кислота способна трансформироваться в арахидоновую с последующим включением ее в биомембраны или синтезом леи котриенов, тромбоксанов, простагландинов. Линоленовая кисло­та играет важную роль в нормальном развитии и функционирова­нии миелиновых волокон нервной системы и сетчатки глаза, вхо­дя в состав структурных фосфолипидов, а также содержится значительных количествах в сперматозоидах.

    Полинасыщенные жирные кислоты состоят из двух основ­ных семейств: производные линолевой кислоты, относящиеся к (о-6 жирным кислотам, и производные линоленовои кислоты -к со-3 жирным кислотам. Именно соотношение этих семейств при условии общей сбалансированности поступления жира ста­новится доминирующим с позиций оптимизации липидж обмена в организме за счет модификации жирно-кислотно]

    состава пищи.

    Линоленовая кислота в организме человека превращается т длинноцепочечные я-3 ПНЖК -- эйкозапентаеновую (ЭПК) и докозагексаеновую (ДГК). Эйкозапентаеновая кислота определя­ется наряду с арахидоновой в структуре биомембран в количестве поямо пропорциональном ее содержанию в пище. При высоком уровне поступления с пищей линолевой кислоты относительно линоленовои (или ЭПК) повышается общее количество арахидо­новой кислоты, включенной в биомембраны, что изменяет функциональные свойства.

    В результате использования организмом ЭПК для синтеза био­логически активных соединений образуются эйкозаноиды, физио­логические эффекты которых (например, снижение скорости тром-бообразования) могут быть прямо противоположными действ! эйкозаноидов, синтезируемых из арахидоновой кислоты. Показа­но также что в ответ на воспаление ЭПК трансформируется в эйкозаноиды, обеспечивая более тонкую по сравнению с эикоза-ноидами - производными арахидоновой кислоты, регуляцию фаз] воспаления и тонуса сосудов.

    Докозагексаеновая кислота найдена в высоких концентрациях в мембранах клеток сетчатки, которые поддерживаются на этом уровне вне зависимости от поступления со-3 ПНЖК с питанием. Она играет важную роль в регенерации зрительного пигмента ро допсина Также высокие концентрации ДГК обнаруживаются в мозге и нервной системе. Эта кислота используется нейронами для модификаций физических характеристик собственных био­мембран (таких, как текучесть) в зависимости от функцис ных потребностей.

    Последние достижения в области нутриогеномики подтверж дают участие ПНЖК семейства со-3 в регуляции экспрессии г

    нов, участвующих в обмене жиров и воспалении, за счет актива­ции факторов транскрипции.

    В последние годы делаются попытки определить адекватные уровни поступления ю-3 ПНЖК с питанием. В частности, показа­но, что для взрослого здорового человека употребление в составе пищи 1,1... 1,6 г/сут линоленовой кислоты полностью покрывает физиологические потребности в этом семействе жирных кислот.

    Основными пищевыми источниками ПНЖК семейства ю-3 являются льняное масло, грецкие орехи (табл. 2.9) и жир морских рыб (табл. 2.10).

    В настоящее время оптимальным соотношением в питании ПНЖК различных семейств считается следующее: ю-6:со-3 = = 6... 10:1.

    Таблица 2.9 Основные пищевые источники линоленовой кислоты

    Таблица 2.10 Основные пищевые источники ПНЖК семейства ю-3

    Порция, г

    Порция, обеспечивающая поступление 1 г ЭПК + ДГК, г

    Креветки

    Рыбий жир (лососевый)

    Фосфолипиды и стерины. В состав пищевых липидон входят такие значимые группы веществ, как фосфолипиды и стерины. К группе фосфолипидов относятся лецитин (фосфотидилхолин), кефалин и сфингомиелин. Фосфолипиды состоят из глицерина, этерифицированного полиненасыщенными жирными кислотами и фосфорной кислотой, которая соединена с азотистым основа­нием. Фосфолипиды, поступающие с пищей, способствуют аб­сорбции триглицеридов пищи за счет мицеллообразования. Они полностью расщепляются в клетках кишечника, поэтому для орга­низма имеет решающее значение их эндогенный синтез в печени и почках. Эндогенный синтез лецитина, в частности, лимитиро­ван поступлением с рационом ПНЖК и холина.

    Лецитин имеет большое значение в регулировании жирового обмена в печени - он относится к липотропным факторам пита­ния, препятствующим жировой инфильтрации печени за счет ак­тивизации транспорта нейтральных жиров из гепатоцитов. К пище­вым продуктам, содержащим максимальное количество предше­ственников синтеза лецитина и его самого, относятся нерафини­рованные растительные масла, яйца, морская рыба, печень, мас­ло сливочное, птица, а также фосфатидные концентраты, полу­чаемые как вторичное сырье при рафинировании масел и исполь­зуемые для обогащения пищевых продуктов.

    Стерины имеют сложное органическое строение: они представ­ляют из себя гидроароматические нейтральные спирты. В живот­ных жирах содержится холестерин, а в растительных - фитосте-рин Наибольшей биологической активностью среди фитостери-нов обладает р-ситостерин. Он способен оказывать гипохолесте-ринемическое действие, снижая абсорбцию холестерина в резуль­тате образования с последним в кишечнике неусваиваемых комп­лексов. Показано также участие ситостеринов в организации био­мембран. В растительных маслах содержится следующее количе­ство р-ситостерина, в 100 г продукта:

    Основным животным стерином является холестерин. В усло­виях сбалансированного питания его эндогенный синтез (био­синтез) из НЖК в печени составляет не менее 80 %, остальной холестерин поступает с пищей. Оптимальным уровнем его по­ступления с рационом считается 0,3 г/сут. В обмене холестерина важную роль играют витамины: аскорбиновая кислота, В 6 , В, 2 , фолиевая кислота, биофлавоноиды. Холестерин имеет ключевое

    значение в организации и нормальном функционировании био­мембран, синтезе стероидных гормонов, кальциферолов, желч­ных кислот.

    Последствия избыточного поступления жиров с пищей. Высокое поступление с пищей НЖК и собственно холестерина сопровож­дается повышением общей концентрации триглицеридов и жир­ных кислот в крови, увеличением количества циркулирующих в крови липопротеинов.

    Все это ведет к гиперлипидемии, а в дальнейшем к развитию дислипопротеинемии - базовому нарушению пищевого статуса, лежащего в основе развития атеросклероза, сахарного диабета и избыточной массы тела и ожирения. Дислипопротеинемия - это нарушение соотношения различных фракций липопротеидов и триглицеридов, циркулирующих в крови, ведущее в различных соотношениях к повышению как абсолютного, так и относитель­ного количества липопротеидов низкой и очень низкой плотно­сти (ЛПНП и ЛПОНП) и триглицеридов при одновременном снижении количества ЛПВП. Последние относятся к компонен­там, снижающим атерогенность холестерина.

    С биохимических позиций очень важно, что именно избыточ­ное поступление с пищей лауриновой, миристиновой и пальми­тиновой жирных кислот ведет к развитию гиперхолестеринемии и росту концентрации в крови наиболее атерогенных ЛПНП. Стеа­риновая кислота не участвует в построении ЛПНП и не обладает гиперхолестеринемическим эффектом.

    Одновременное с ростом ЛПНП снижение концентрации ЛПВП отмечено при чрезмерном употреблении с пищей транси­зомеров жирных кислот. В природных жирах они практически от­сутствуют, за исключением небольшого содержания в мясе и мо­локе коров и овец - у этих животных происходит частичная изо­меризация природных жирных кислот в желудке. Основная же масса трансизомеров образуется при гидрогенезации ПНЖК - разрыве двойных связей атомами водорода при производстве маргарина или так называемых мягких масел (состоящих из комбинации ра­стительных и животных жиров). Длинноцепочечные жирные кис­лоты пищи, поступающие в организм в виде трансизомеров, на­пример транс- lS : 1; не могут включаться в биосинтез биологиче­ски активных клеточных регуляторов (простагландинов и лейко-триенов), а используются лишь в качестве энергетического суб­страта.

    При поступлении жира в избыточном по сравнению с потреб­ностью организма количестве также стимулируется глюконеоге-нез. Последнее обстоятельство приводит к снижению степени ути­лизации «углеводной» глюкозы из крови, увеличению нагрузки на инсулярный аппарат и проявляется у здорового человека в ро­сте концентрации гликозилированного гемоглобина ai c .

    С гигиенических позиций, учитывая, что человек мс питается отдельными жирными кислотами, гиперлипидемия и дислипо-протеинемия, а также метаболическая гипергликемия должны рас­сматриваться как результат избыточного поступления с пищей всего объема жировых продуктов и продуктов, содержащих скрытый жир, независимо от их природы и жирно-кислотного состава.

    В природе не существует «идеального» с позиций оптимально­го питания источника жира. Жирно-кислотный состав всех ис­пользуемых растительных масел наряду со значительным содер­жанием МНЖК и ПНЖК включает в себя и существенные коли­чества среднецепочечных НЖК (10... 15 % и более).

    Морская рыба в настоящее время является единственным ис­точником жира, адекватное увеличение употребления которого взамен жира животного происхождения и растительного масла может рассматриваться как эволюционно оправданный шаг. При этом, однако, следует учитывать реальную возможность интенси­фикации прооксидантной нагрузки на организм, связанной с дей­ствием двух факторов:

      наличием относительно большого количества ПНЖК с вы­ сокой степенью ненасыщенности (пять и шесть двойных связей), обладающих в силу этого большой способностью к окислению;

      отсутствием в жире рыб основного антиоксиданта - вита­ мина Е.

    Немаловажной является проблема безопасности рыбного сы­рья в плане контроля над остаточными количествами токсичных элементов, полихлорированных бифенилов и других контаминан-тов, а также природных токсинов (это особенно актуально при возможном использовании нетрадиционных видов морских рыб и других морепродуктов).

    Еще один способ оптимизации жирно-кислотного состава пи­щевых продуктов связан с возможностями селекции и генной ин­женерии в рамках современной биотехнологии. Так, в результате обычной селекционной работы уже получены высокоолеиновое подсолнечное масло и низкоэруковое рапсовое. В настоящее время ведутся научно-практические разработки для создания на основе генной модификации масличных и зерновых культур (в первую оче­редь сои, рапса и кукурузы) с заданным составом жирных кислот.

    Учитывая возможные индивидуальные особенности обмена веществ, оптимальный уровень жира находится в интервале 20... 30 % от энергетической ценности рациона, т. е. не должен пре­вышать 35 г на 1000 ккал рациона. Для человека со средним уров­нем энергозатрат это соответствует примерно 70... 100 г жира в сутки.

    Большинство липидных соединений организма человека могут при необходимости быть синтезированы в обменных процессах из углеводов. Исключение составляют незаменимые полиненасыщен-

    ные жирные кислоты линолевая и линоленовая, входящие соот­ветственно в семейства со-6 и со-3. В этой связи нормируются как общее поступление ПНЖК: оно должно быть в интервале 3...7 % энергоценности рациона, так и потребность в линолевой кислоте: 6... 10 r/сут (это количество содержится в 1 столовой ложке расти­тельного масла). Норматив для линоленовой кислоты не установ­лен, но ее должно поступать не меньше 10% от содержания в пище линолевой кислоты.

    2-4. Углеводы и их значение в питании

    Углеводы являются основными энергонесущими макронутри-ентами в питании человека, обеспечивая 50...70 % общей энерге­тической Ценности рациона. Они способны при метаболизации образовывать макроэргические соединения, причем как в аэроб­ных, так и анаэробных условиях. В результате метаболизации 1 г углеводов ор гани3 м получает энергию, эквивалентную 4 ккал. Об­мен углевод ов тесно связан с обменом жиров и белков, что обес­печивает их взаимные превращения. При умеренном недостатке углеводов в питании депонированные жиры, а при глубоком де­фиците (менее 50 r/сут) и аминокислоты (как свободные, так и из состава Мышечных белков) вовлекаются в процесс глюконео-генеза, приводящий к получению необходимой организму энер­гии. В обратной ситуации происходит активация липонеогенеза и из лишних углеводов синтезируются жирные кислоты, отклады­вающиеся в депо.

    Наряду с основной энергетической функцией углеводы уча­ствуют в пластическом обмене. Глюкоза и ее метаболиты (сиало-вые кислоты, аминосахара) являются составными частями гли-копротеидов 5 к которым относятся большинство белковых соеди­нений крови (трансферрин, иммуноглобулины), ряд гормонов, ферментов, факторов свертывания крови. Гликопротеиды, а так­же гликолиггиды участвуют вместе с белками и липидами в струк­турной и Функциональной организации биомембран и играют при этом ведущу ю роль в процессах клеточной рецепции гормонов и других биоло гичес ки активных соединений и в межклеточном вза­имодействии, имеющем существенное значение для нормального клеточного роста, дифференцировки и иммунитета. Углеводы пищи также являются предшественниками гликогена и триглицеридов; они служат источником углеродного основания заменимых ами­нокислот, участвуют в построении коферментов, нуклеиновых кислот, аденозинтрифосфорной кислоты (АТФ) и других биоло­гически важных соединений. Углеводы оказывают антикетогенное действие, стимулируя окисление ацетилкоэнзима А, образующе­гося при окислении жирных кислот.

    Углеводы - это полиатомные альдегиде- и кетоспирты. Они образуются в растениях при фотосинтезе и поступают в организм главным образом с растительными продуктами. Однако все боль­шее значение в питании приобретают добавленные углеводы, ко­торые чаще всего представлены сахарозой (или смесями других Сахаров), получаемой промышленным способом и вводимой за­тем в пищевые рецептуры.

    Все углеводы делятся по степени полимеризации на простые и сложные. К простым относятся так называемые сахара - моноса­хариды: гексозы (глюкоза, фруктоза, галактоза), пентозы (ксило­за, рибоза, дезоксирибоза) и дисахариды (лактоза, мальтоза, га­лактоза, сахароза).

    Сложными углеводами являются олигосахариды, состоящие из нескольких (3...9) остатков моносахаридов (рафиноза, стахиоза, лактулоза, олигофруктоза) и полисахариды. Полисахариды пред­ставляют собой высокомолекулярные полимерные соединения, образованные из большого числа мономеров, в качестве которых выступают остатки моносахаридов. Полисахариды делятся на крах­мальные и некрахмальные, которые в свою очередь могут быть растворимыми и нерастворимыми.

    Моно- и дисахариды. Они обладают сладким вкусом и поэтому называются сахарами. Степень сладости различных Сахаров неоди­накова. Если сладость сахарозы принять за 100 %, то сладость дру­гих Сахаров составит, %:

    Фруктозы 173

    Глюкозы 81

    Мальтозы и галактозы 32

    Рафинозы 23

    Лактозы 16

    Полисахариды сладким вкусом не обладают.

    Природными источниками простых углеводов являются фрук­ты, ягоды, овощи, плоды, в некоторых из которых содержание Сахаров достигает 4... 17 % (табл. 2.11).

    Глюкоза (альдегидоспирт) является основным структурным мо­номером всех важнейших полисахаридов - крахмала, гликогена, целлюлозы. Она поступает с питанием изолированно в составе ягод, фруктов, плодов и овощей, а также в качестве компонента наиболее распространенных дисахаридов: сахарозы, мальтозы, лактозы. Глю­коза быстро и практически в полном объеме усваивается в желудоч­но-кишечном тракте, поступает в кровь и разносится ко всем орга­нам и тканям для окисления, сопряженного с образованием энер­гии. Уровень глюкозы в крови наряду с уровнем ряда аминокислот является сигналом для соответствующих структур головного мозга, моделирующих аппетит и пищевое поведение человека. Избыток глю­козы быстро превращается в депонирующиеся триглицериды.

    Таблица 2.11

    Фруктоза в отличие от глюкозы является кетоспиртом и обла­дает другой динамикой распределения и метаболизации в орга­низме. Она почти в два раза медленнее всасывается в кишечнике и в большей степени задерживается в печени. Фруктоза переходит в глюкозу в клеточных обменных процессах, но увеличение кон­центрации глюкозы в крови происходит при этом плавно и посте­пенно, с меньшим напряжением инсулярного аппарата. В то же время фруктоза по более короткому метаболическому пути по срав-

    нению с глюкозой вовлекается в процессы липонеогенеза и спо­собствует отложению жира в депо. Этим объясняются ряд новых фактов, полученных при изучении положительной динамики массы тела у лиц, регулярно употребляющих продукты, обогащенные пищевыми компонентами, содержащими фруктозу (мальтодекст-риновые кукурузные сиропы). Чрезмерное поступление фруктозы приводит к увеличению концентрации в крови С-пептида, харак­теризующего степень инсулинрезистентности при развитии сахар­ного диабета второго типа. Фруктоза содержится в пищевых про­дуктах как в свободном виде в меде и фруктах, так и в виде фрук-тозного полисахарида инулина в составе топинамбура (земляной груши), цикория и артишоков.

    Галактоза поступает в организм в составе молочного сахара (лактозы). В свободном виде она может находиться в некоторых ферментированных молочных продуктах, таких как йогурты. Га­лактоза превращается в печени в глюкозу.

    Основным промышленно производимым дисахаридом являет­ся сахароза, или столовый сахар. Сырьем для его производства слу­жат сахарная свекла (14...25% сахара) и сахарный тростник (10... 15% сахара). Натуральными источниками сахарозы в пита­нии являются дыни, арбузы, некоторые овощи, ягоды и фрукты. Сахароза легко усваивается и быстро распадается на глюкозу и фруктозу, которые затем вовлекаются в присущие им обменные

    процессы.

    Именно использование сахарозы в качестве существенного ком­понента многих продуктов (кондитерских изделий, конфет, дже­мов, десертов, мороженого, прохладительных напитков) приве­ло в настоящее время к увеличению доли моно- и дисахаридов в общем объеме поступающих углеводов в развитых странах до 50 % и выше (при рекомендуемых 20 %). В результате на фоне снижа­ющихся энергозатрат увеличивается алиментарная нагрузка на ин-сулярный аппарат, повышается уровень инсулина в крови, ин­тенсифицируется отложение жира в депо, нарушается липидный профиль крови. Все это способствует увеличению риска развития сахарного диабета, ожирения, атеросклероза и многочисленных заболеваний, базирующихся на перечисленных патологических

    состояниях.

    Лактоза является основным углеводом молока и молочных продуктов (состоит из молекул галактозы и глюкозы) и имеет большое значение в качестве источника углеводов для питания детей. У взрослых его доля в углеводном составе рациона значи­тельно снижается за счет широкого использования других источ­ников. К тому же у взрослых, а иногда и детей снижена актив­ность фермента лактазы, расщепляющего молочный сахар. Послед­ствиями непереносимости цельного молока и продуктов, содер­жащих его, являются диспептические расстройства. Использова-

    ние в питании кисло-мол очных продуктов (кефира, йогурта, сме­таны), а также творога и сыра, как правило, не вызывают подоб­ной клинической картины. Непереносимость молока отмечается у 30...35 % взрослого населения Европы, в то время как у жителей Африки - более чем у 75 %.

    Мальтоза, или солодовый сахар, в свободном виде встречается в меде, солоде, пиве, патоке и продуктах, изготавливаемых с до­бавлением патоки (кондитерские и хлебобулочные изделия). В орга­низме мальтоза представляет собой промежуточный продукт и обра­зуется в результате расщепления в желудочно-кишечном тракте полисахаридов. Затем онадиссимилируетдо двух молекул глюкозы. В некоторых фруктах (яблоках, грушах, персиках) и ряде ово­щей встречается спиртовая форма Сахаров - сорбит, являющий­ся восстановленной формой глюкозы. Он способен поддерживать уровень глюкозы в крови, не вызывая чувства голода и не напря­гая инсулярный аппарат. Сорбит и другие многоатомные спирты, такие как ксилит, маннит или их смеси, обладая сладким вкусом (30...40 % сладости глюкозы), используются для производства ши­рокого ассортимента пищевых продуктов, в первую очередь для питания больных сахарным диабетом, а также жевательной ре­зинки. К недостаткам многоатомных спиртов относится их влия­ние на кишечник, выражающееся в послабляющем эффекте и повышенном газообразовании.

    Олигосахариды. Олигосахариды, к которым относятся рафино-за, стахиоза, вербаскоза, в основном содержатся в бобовых и про­дуктах их технологической переработки, например в соевой муке, а также в незначительных количествах во многих овощах. Фрукто-олигосахариды встречаются в зерновых (пшенице, ржи), овощах (луке, чесноке, артишоках, спарже, ревене, цикории), а также в бананах и меде. К группе олигосахаридов также относятся мальто-декстрины, являющиеся основными компонентами промышлен-но производимых из полисахаридного сырья сиропов, паток. Од­ним из представителей олигосахаридов является лактулоза, обра­зующаяся из лактозы в процессе тепловой обработки молока, на­пример при выработке топленого и стерилизованного молока.

    Олигосахариды практически не расщепляются в тонком ки­шечнике человека из-за отсутствия соответствующих ферментов. По этой причине они обладают свойствами пищевых волокон. Некоторые Олигосахариды играют существенную роль в жизнедея­тельности нормальной микрофлоры толстого кишечника, что позволяет отнести их к пребиотикам - веществам, частично фер­ментирующимся некоторыми кишечными микроорганизмами и обеспечивающим поддержание нормального микробиоценоза ки­шечника.

    Полисахариды. Основным усваиваемым полисахаридом явля­ется крахмал - пищевая основа зерновых, бобовых и картофеля. 56

    Он представляет из себя сложный полимер (в качестве мономера, к котором находится глюкоза), состоящий из двух фракций: ами­лозы -- линейного полимера (200...2000 мономеров) и амило-пектина - разветвленного полимера (10000... 1 000000 мономе­ров). Именно соотношение этих двух фракций в различных сырь­евых источниках крахмала и определяет его различные физико-химические и технологические характеристики, в частности рас­творимость в воде при разной температуре.

    Для облегчения усвоения крахмала организмом продукт, со­держащий его, должен быть подвергнут тепловой обработке. При этом образуется крахмальный клейстер в явной форме, например кисель, или скрытом виде в составе пищевой композиции: каше, хлебе, макаронах, блюд из бобовых. Крахмальные полисахариды, поступившие с пищей в организм, подвергаются последователь­ной, начиная с ротовой полости, ферментации до мальтодекст-ринов, мальтозы и глюкозы с последующим практически пол­ным усвоением. Крахмал диссимилируется организмом достаточ­но длительный период и в отличие от моно- и дисахаридов не обеспечивает столь быстрое и выраженное повышение уровня глю­козы в крови. Однако основные пищевые источники крахмальных полисахаридов (хлеб, крупы, макароны, бобовые, картофель) поставляют в организм значительные количества аминокислот, витаминов и минеральных веществ и минимум жира. В то же время сахар не только не содержит незаменимых нутриентов, но и тре­бует для своей метаболизации в организме затрат дефицитных витаминов и других микронутриентов. Большинство сладких кон­дитерских изделий одновременно являются и источниками скры­того жира (торты, пирожные, вафли, печенье сдобное, шоко­лад).

    В процессе тепловой обработки (выпечки, отваривания) и при охлаждении может образовываться так называемый резистентный (устойчивый к перевариванию) крахмал, количество которого зависит как от степени тепловой нагрузки, так от содержания в крахмале амилозы. Устойчивые к перевариванию крахмалы содер­жатся и в натуральных продуктах - их максимальное количество найдено в бобовых и картофеле. Вместе с олигосахаридами и не­крахмальными полисахаридами они составляют углеводную груп­пу пищевых волокон.

    В последние годы увеличился объем используемых в пищевой промышленности так называемых модифицированных крахмалов. Они отличаются от природных форм хорошей растворимостью в воде (независимо от температуры). Это достигается их предваритель­ной производственной ферментацией с образованием в конечной композиции различных декстринов. Модифицированные крахма­лы используют в виде пищевых добавок для достижения ряда тех­нологических целей: придания продукту заданного внешнего вида

    и стабильной формы, достижения необходимой вязкости и одно­родности.

    Вторым перевариваемым полисахаридом является гликоген. Его пищевое значение невелико --с рационом поступает не более 10... 15 г гликогена в составе печени, мяса и рыбы. При созрева­нии мяса гликоген превращается в молочную кислоту.

    У человека излишки глюкозы в первую очередь (до метаболиче­ской трансформации в жир) превращаются именно в гликоген - единственный резервный углевод животных тканей. В организме человека общее содержание гликогена составляет около 500 г ("/ 3 в печени, остальное количество в мышцах) - это суточный за­пас углеводов, используемый при их глубоком дефиците в пита­нии. Длительный дефицит гликогена в печени ведет к дисфунк­ции гепатоцитов и ее жировой инфильтрации.

    Величина потребности в углеводах для человека определяет­ся их ведущей ролью в обеспечении организма энергией и не­желательностью синтеза глюкозы из жиров (а тем более из бел­ков) и находится в прямой зависимости от энергозатрат. Учи­тывая возможные индивидуальные особенности обмена веществ и уровень поступления жира, оптимальный уровень углеводов в питании находится в интервале 55...65 % энергоценности рацио­на, т.е. в среднем составляет 150 г на 1000 ккал рациона. Для человека со средним уровнем энергозатрат это соответствует при­мерно 300...400 г углеводов в сутки.

    Потребность человека с энергозатратами 2 800 ккал в углево­дах и их оптимальная групповая сбалансированность может быть в основном обеспечена:

    1) ежедневным потреблением".

      360 г хлеба и хлебобулочных изделий;

      300 г картофеля;

      400 г овощей, зелени, бобовых;

      200 г фруктов, ягод;

      не более 60 г сахара (чем меньше - тем лучше);

    2) еженедельным потреблением:

      175 г круп;

      140 г макаронных изделий.

    Оценку адекватности обеспечения реальной потребности в уг­леводах взрослого человека необходимо проводить с использова­нием индикаторных параметров пищевого статуса: индекса массы тела и уровня гликозилированного гемоглобина А 1с, повышение концентрации которого свидетельствует о длительном чрезмер­ном употреблении Сахаров, в том числе и у здорового человека.

    С позиций оценки возможного влияния углеводного компо­нента рациона на параметры пищевого статуса, характеризующие углеводный обмен, целесообразно использовать данные о так на­зываемом гликемическом индексе (ГИ) - процентном показателе,

    отражающем разницу в изменении концентрации глюкозы в сы­воротке крови в течение 2 ч после употребления какого-либо про­дукта по сравнению с аналогичным результатом после употребле­ния тест-продукта. В качестве тест-продукта обычно используют глюкозу (50 г) или пшеничный хлеб (порция, содержащая 50 г крахмала).

    Гликемический индекс продуктов (табл. 2.12) зависит от мно­гих пищевых факторов:

    Химической структуры и формы углеводов, входящих в со­став продукта;

    Таблица 2.12

    Порция, включающая в себя 50 г углеводов.


    Гликемический индекс некоторых продуктов

      наличия в пищевом продукте белков, жиров, непереваривае­ мых компонентов, органических кислот;

      способа кулинарной, в том числе тепловой, обработки про­ дукта.

    Сложные углеводы могут иметь ГИ, приближающийся к уров­ню простых углеводов и даже превосходящий его для некоторых моно- и дисахаров. Уровень гликемии после употребления крах-малсодержащих продуктов зависит в том числе от соотношения в крахмале амилозы и амилопектина: скорость переваривания и ус­вояемости амилопектина меньше, чем амилозы.

    Информация о величине ГИ продукта имеет значение не толь­ко для больных сахарным диабетом, но и полезна любому потре­бителю с позиций профилактики чрезмерной алиментарной гли­кемии. Данную информацию целесообразно выносить на этикетку продуктов, содержащих углеводы.

    Некрахмальные полисахариды. Некрахмальные полисахариды (НПС) -- это широко распространенные вещества растительной природы. В их химический состав входят смеси различных полиса­харидов, содержащие пентозы (ксилоза и арабиноза), гексозы (рамноза, манноза, глюкоза, галактоза) и уроновые кислоты. Ряд из них содержатся в клеточных оболочках, играя структурную роль, другие находятся в форме камедей и слизей внутри и на поверх­ности растительных клеток.

    Согласно классификации НПС делятся на несколько групп: целлюлоза, гемицеллюлоза, пектины, р-гликаны и гидроколлои­ды (камеди, слизи).

    Некрахмальные полисахариды не перевариваются в тонком кишечнике человека в связи с отсутствием соответствующих фер­ментных систем, по этой причине ранее они назывались «балласт­ными веществами», признаваясь лишними компонентами пищи, удаление которых в процессе технологической переработки про­довольственного сырья считалось вполне допустимым. Это оши­бочное мнение наряду с другими чисто технологическими причи­нами способствовало появлению широкого ассортимента рафи­нированных (очищенных от НПС) пищевых продуктов, име­ющих значительно более низкие показатели пищевой ценности. В настоящее время не вызывает сомнений, что НПС играют зна­чительную роль в жизнеобеспечении организма как на функцио­нальном, так и на метаболическом уровнях, что позволяет отнес­ти их к группе незаменимых факторов питания человека.

    У животных встречается в виде единственного исключения только одна группа неперевариваемых углеводных полимеров, состоящих из ацетилированного гликозамина, - хитин и хито-зан, пищевыми источниками которых является панцирь крабов и лобстеров (может использоваться в качестве пищевого обога­тителя).

    Аналогичными свойствами обладает также лигнин - водоне-растворимое соединение неуглеводной (полифенольной) приро­ды, входящее в состав клеточных оболочек многих растений и семян.

    Пищевые волокна. Все перечисленные выше НПС, лигнин и хитин в совокупности с олигосахаридами и неперевариваемым крахмалом в настоящее время объединяются в одну общую разно­родную группу пищевых веществ, названных пищевыми волокна­ми (ПВ). Таким образом, пищевые волокна - это съедобные ком­поненты пищи, главным образом растительной природы, устой­чивые к перевариванию и усвоению в тонком кишечнике, но под­вергающиеся полной или частичной ферментации в толстом ки­шечнике.

    Хорошими источниками ПВ в питании являются бобовые, зер­новые, орехи, а также фрукты, овощи и ягоды (табл. 2.13). Чем выше степень очистки (рафинирования) продовольственного сы­рья при технологической переработке, тем меньше ПВ (а также и многих михронутриентов) остается в конечном продукте. Этот факт наглядно иллюстрируется на примере продуктов перера­ботки зерна: в пшенице содержится 2,5 г ПВ (на 100 г); в пше­ничной муке, г: обойной - 1,9, 2-го сорта - 0,6, 1-го сорта - 0,2, высшего сорта - 0,1; в хлебе (в зависимости от сорта муки 0,1... 1,7); в овсе - ю,7 г; в овсяной крупе - 2,8, в овсяных хлопьях - 1,3.

    Таблица 2.13

  • 3.3.2. Яйца и яичные продукты
  • 3.3.3. Мясо и мясные продукты
  • 3.3.4. Рыба, рыбные продукты и морепродукты
  • 3.4. Консервированные продукты
  • Классификация консервов
  • 3.5. Продукты с повышенной пищевой ценностью
  • 3.5.1. Обогащенные продукты
  • 3.5.2. Функциональные пищевые продукты
  • 3.5.3. Биологически активные добавки к пище
  • 3.6. Гигиенические подходы к формированию рационального ежедневного продуктового набора
  • Глава 4
  • 4.1. Роль питания в возникновении заболеваний
  • 4.2. Алиментарно-зависимые неинфекционные заболевания
  • 4.2.1. Питание и профилактика избыточной массы тела и ожирения
  • 4.2.2. Питание и профилактика сахарного диабета II типа
  • 4.2.3. Питание и профилактика сердечно-сосудистых заболеваний
  • 4.2.4. Питание и профилактика онкологических заболеваний
  • 4.2.5. Питание и профилактика остеопороза
  • 4.2.6. Питание и профилактика кариеса
  • 4.2.7. Пищевые аллергии и другие проявления пищевой непереносимости
  • 4.3. Заболевания, связанные с инфекционными агентами и паразитами, передающимися с пищей
  • 4.3.1. Сальмонеллезы
  • 4.3.2. Листериозы
  • 4.3,3. Коли-инфекции
  • 4.3.4. Вирусные гастроэнтериты
  • 4.4. Пищевые отравления
  • 4.4.1. Пищевые токсикоинфекции и их профилактика
  • 4.4.2. Пищевые бактериальные токсикозы
  • 4.5. Общие факторы возникновения пищевых отравлений микробной этиологии
  • 4.6. Пищевые микотоксикозы
  • 4.7. Пищевые отравления немикробной природы
  • 4.7.1. Отравления грибами
  • 4.7.2. Отравления ядовитыми растениями
  • 4.7.3. Отравления семенами сорных растений, загрязняющих злаковые культуры
  • 4.8. Отравления животными продуктами, ядовитыми по своей природе
  • 4.9. Отравления растительными продуктами, ядовитыми при определенных условиях
  • 4.10. Отравления животными продуктами, ядовитыми при определенных условиях
  • 4.11. Отравления химическими веществами (ксенобиотиками)
  • 4.11.1. Отравления тяжелыми металлами и мышьяком
  • 4.11.2. Отравления пестицидами и другими агрохимическими средствами
  • 4.11.3. Отравления компонентами агрохимикатов
  • 4.11.4. Нитрозамины
  • 4.11.5. Полихлорированные бифенилы
  • 4.11.6. Акриламид
  • 4.12. Расследование пищевых отравлений
  • Глава 5 питание различных групп населения
  • 5.1. Оценка состояния питания различных групп населения
  • 5.2. Питание населения в условиях неблагоприятного действия факторов окружающей среды
  • 5.2.1. Основы алиментарной адаптации
  • 5.2.2. Гигиенический контроль состояния и организации питания населения, проживающего в условиях радиоактивной нагрузки
  • 5.2.3. Лечебно-профилактическое питание
  • 5.3. Питание отдельных групп населения
  • 5.3.1. Питание детей
  • 5.3.2. Питание беременных и кормящих
  • Родильниц и кормящих
  • 5.3.3. Питание лиц престарелого и старческого возраста
  • 5.4. Диетическое (лечебное) питание
  • Глава 6 государственный санитарно-эпидемиологический надзор в области гигиены питания
  • 6.1. Организационные и правовые основы Госсанэпиднадзора в области гигиены питания
  • 6.2. Госсанэпиднадзор за проектированием, реконструкцией и модернизацией пищевых предприятий
  • 6.2.1. Цель и порядок Госсанэпиднадзора за проектированием пищевых объектов
  • 6.2.2. Госсанэпиднадзор за строительством пищевых объектов
  • 6.3. Госсанэпиднадзор за действующими предприятиями пищевой промышленности, общественного питания и торговли
  • 6.3.1. Общие гигиенические требования к пищевым предприятиям
  • 6.3.2. Требования к организации производственного контроля
  • 6.4. Предприятия общественного питания
  • 6.5. Организации продовольственной торговли
  • 6.6. Предприятия пищевой промышленности
  • 6.6.1. Санитарно-эпидемиологические требования к производству молока и молочных продуктов
  • Качественные показатели молока
  • 6.6.2. Санитарно-эпидемиологические требования к производству колбасных изделий
  • 6.6.3. Госсанэпиднадзор за применением пищевых добавок на предприятиях пищевой промышленности
  • 6.6.4. Хранение и транспортировка пищевых продуктов
  • 6.7. Государственное регулирование в области обеспечения качества и безопасности пищевых продуктов
  • 6.7.1. Разделение полномочий органов государственного надзора и контроля
  • 6.7.2. Стандартизация пищевых продуктов, ее гигиеническое и правовое значение
  • 6.7.3. Информация для потребителей о качестве и безопасности пищевых продуктов, материалов и изделий
  • 6.7.4. Проведение санитарно-эпидемиологической (гигиенической) экспертизы продукции в предупредительном порядке
  • 6.7.5. Проведение санитарно-эпидемиологической (гигиенической) экспертизы продукции в текущем порядке
  • 6.7.6. Экспертиза некачественных и опасных продовольственного сырья и пищевых продуктов, их использование или уничтожение
  • 6.7.7. Мониторинг качества и безопасности пищевых продуктов, здоровья населения (социально-гигиенический мониторинг)
  • 6.8. Госсанэпиднадзор за выпуском новых пищевых продуктов, материалов и изделий
  • 6.8.1. Правовая основа и порядок государственной регистрации новых пищевых продуктов
  • 6.8.3. Контроль за производством и оборотом биологически активных добавок
  • 6.9. Основные полимерные и синтетические материалы, контактирующие с пищевой продукцией
  • Глава 1. Основные этапы развития гигиены питания 12
  • Глава 2. Энергетическая, пищевая и биологическая ценность
  • Глава 3. Пищевая ценность и безопасность пищевых продуктов 157
  • Глава 4. Алиментарно-зависимые заболевания
  • Глава 5. Питание различных групп населения 332
  • Глава 6. Государственный санитарно-эпидемиологический надзор
  • Гигиена питания Учебник
  • 2.3. Жиры и их значение в питании

    Жиры (липиды) - это сложные органические соединения, со­стоящие из триглицеридов и липоидных веществ (фосфолипидов, стеринов). В состав триглицеридов входит глицерин и жирные кис­лоты, соединенные эфирными связями. Жирные кислоты явля­ются основными компонентами липидов (около 90 %), именно их структура и характеристики определяют свойства различных ви­дов пищевых жиров. По своей природе пищевые жиры могут быть животными и растительными. По химической структуре раститель­ные масла отличаются от животного жира жирно-кислотным со­ставом. Высокое содержание в растительных маслах ненасыщен­ных жирных кислот придает им жидкое агрегатное состояние и определяет их пищевую ценность. Растительные жиры (масла) находятся при обычных условиях в жидком агрегатном состоянии за исключением пальмового масла.

    Жиры играют значительную роль в жизнедеятельности орга­низма. Они являются вторыми по значимости после углеводов ис­точниками общей энергии, поступающей с пищей. При этом, обладая максимальным среди энергонесущих нутриентов калори­ческим коэффициентом (1 г жира дает организму 9 ккал), жиры даже в небольшом количестве способны придать содержащему их продукту высокую энергетическую ценность. Это обстоятельство имеет не только положительное значение, но и является предпо­сылкой формирования быстрого и относительно не связанного с большими объемами употребляемой пищи избыточного поступ­ления жира и соответственно энергии.

    Физиологическая роль жиров, однако, не сводится лишь к их энергетической функции. Пищевые жиры являются прямыми ис­точниками или предшественниками образования в организме

    Окончание табл. 2.6

    структурных компонентов биологических мембран, стероидных гормонов, кальциферолов и регуляторных клеточных соединений -эйкозаноидов (лейкотриенов, простагландинов). С пищевыми жи­рами в организм поступают также другие соединения липидной природы или липофильной структуры: фосфатиды; стерины; жи­рорастворимые витамины.

    В желудочно-кишечном тракте здорового человека при нормаль­ном уровне поступления жиров усваивается около 95 % их общего количества.

    В составе пищи жиры представлены в виде собственно жиро­вых продуктов (масло, сало и т.п.) и так называемых скрытых жиров, входящих в состав многих продуктов (табл. 2.6).

    Таблица 2.6

    Основные источники пищевых жиров

    Именно продукты, содержащие скрытый жир, являются ос­новными поставщиками пищевых жиров в организм человека.

    Жирные кислоты, входящие в состав пищевых жиров, делятся на три большие группы: насыщенные, мононенасыщенные и по­линенасыщенные (табл. 2.7).

    Таблица 2.7 Основные жирные кислоты пищи и их физиологическое значение

    Окончание табл. 2.7

    * ЛПВП - липопротеиды высокой плотности.

    Насыщенные жирные кислоты. Насыщенные жирные кислоты (НЖК), наиболее представленные в пище, делятся на короткоце-почечные (4... 10 атомов углерода - масляная, капроновая, кап-риловая, каприновая), среднецепочечные (12... 16 атомов углеро­да - лауриновая, миристиновая, пальмитиновая) и длинноце-почечные (18 атомов углерода и более - стеариновая, арахидино-вая).

    Жирные кислоты с короткой длиной углеродной цепи практи­чески не связываются с альбуминами в крови, не депонируются в тканях и не включаются в состав липопротеинов - они способны быстро окисляться с образованием энергии и кетоновых тел. Кро­ме того, они выполняют ряд биологических функций, например масляная кислота служит модулятором генетической регуляции, иммунного ответа и воспаления на уровне слизистой кишечника, а также обеспечивает клеточную дифференцировку и апоптоз. Каприновая кислота является предшественником монокаприна -соединения с антивирусной активностью. Избыточное поступле-

    ние короткоцепочечных жирных кислот может привести к разви­тию метаболического ацидоза.

    Жирные кислоты со средней и длинной углеродной цепью, напротив, включаются в состав липопротеинов, циркулируют в крови, запасаются в жировых депо и используются для синтеза других липоидных соединений в организме, например холестери­на. Кроме того, для лауриновой кислоты показана способность инактивировать ряд микроорганизмов, в частности Helicobacter pylory, а также грибки и вирусы за счет разрыва липидного слоя их биомембран.

    Лауриновая и миристиновая жирные кислоты в наибольшей степени повышают уровень холестерина в сыворотке крови и в силу этого ассоциируются с максимальным риском развития ате­росклероза.

    Пальмитиновая кислота также ведет к повышенному синтезу липопротеинов. Она является основной жирной кислотой, связы­вающей кальций (в составе жирных молочных продуктов) в неу­сваиваемый комплекс, омыляя его.

    Стеариновая кислота, так же как и короткоцепочечные жир­ные кислоты, практически не влияет на уровень холестерина в крови, более того - она способна снижать усвояемость холесте­рина в кишечнике за счет уменьшения его растворимости.

    Ненасыщенные жирные кислоты. Ненасыщенные жирные кис­лоты подразделяют по степени не насыщенности на мононенасы-шенные жирные кислоты (МНЖК) и полиненасыщенные жир­ные кислоты (ПНЖК).

    Мононенасыщенные жирные кислоты имеют одну двойную связь. Основным их представителем в рационе является олеиновая кислота (18:1 п-9 - двойная связь в положении 9-го углеродного атома). Ее основными пищевыми источниками служат оливковое и арахисовое масло, свиной жир. К МНЖК относятся также эруко-вая кислота (22:1 и-9), составляющая "/ 3 от состава жирных кислот в рапсовом масле, и пальмитолеиновая кислота (18:1 «-9), при­сутствующая в рыбьем жире.

    К ПНЖК относятся жирные кислоты, имеющие несколько двойных связей: линолевая (18:2 и-6), линоленовая (18:3 п-3), арахидоновая (20:4 п-6), эйкозапентаеновая (20:5 л-3), докоза-гексаеновая (22:6 п-У). В питании их основными источниками яв­ляются растительные масла, рыбий жир, орехи, семена, бобовые (табл. 2.8). Подсолнечное, соевое, кукурузное и хлопковое масла являются основными источниками линолевой кислоты в питании. В рапсовом, соевом, горчичном, кунжутном масле содержатся зна­чимые количества линолевой и линоленовой кислот, причем со­отношение их различно - от 2:1 в рапсовом, до 5:1 в соевом.

    В организме человека ПНЖК выполняют биологически важ­ные функции, связанные с организацией и функционированием

    биомембран и синтезом тканевых регуляторов. В клетках "P^cxo-дит! сложный процесс синтеза и взаимного превращения I линЬлевая кислота способна трансформироваться в арахидоновую с последующим включением ее в биомембраны или синтезом леи котриенов, тромбоксанов, простагландинов. Линоленовая кисло­та играет важную роль в нормальном развитии и функционирова­нии миелиновых волокон нервной системы и сетчатки глаза, вхо­дя в состав структурных фосфолипидов, а также содержится значительных количествах в сперматозоидах.

    Полинасыщенные жирные кислоты состоят из двух основ­ных семейств: производные линолевой кислоты, относящиеся к (о-6 жирным кислотам, и производные линоленовои кислоты -к со-3 жирным кислотам. Именно соотношение этих семейств при условии общей сбалансированности поступления жира ста­новится доминирующим с позиций оптимизации липидж обмена в организме за счет модификации жирно-кислотно]

    состава пищи.

    Линоленовая кислота в организме человека превращается т длинноцепочечные я-3 ПНЖК -- эйкозапентаеновую (ЭПК) и докозагексаеновую (ДГК). Эйкозапентаеновая кислота определя­ется наряду с арахидоновой в структуре биомембран в количестве поямо пропорциональном ее содержанию в пище. При высоком уровне поступления с пищей линолевой кислоты относительно линоленовои (или ЭПК) повышается общее количество арахидо­новой кислоты, включенной в биомембраны, что изменяет функциональные свойства.

    В результате использования организмом ЭПК для синтеза био­логически активных соединений образуются эйкозаноиды, физио­логические эффекты которых (например, снижение скорости тром-бообразования) могут быть прямо противоположными действ! эйкозаноидов, синтезируемых из арахидоновой кислоты. Показа­но также что в ответ на воспаление ЭПК трансформируется в эйкозаноиды, обеспечивая более тонкую по сравнению с эикоза-ноидами - производными арахидоновой кислоты, регуляцию фаз] воспаления и тонуса сосудов.

    Докозагексаеновая кислота найдена в высоких концентрациях в мембранах клеток сетчатки, которые поддерживаются на этом уровне вне зависимости от поступления со-3 ПНЖК с питанием. Она играет важную роль в регенерации зрительного пигмента ро допсина Также высокие концентрации ДГК обнаруживаются в мозге и нервной системе. Эта кислота используется нейронами для модификаций физических характеристик собственных био­мембран (таких, как текучесть) в зависимости от функцис ных потребностей.

    Последние достижения в области нутриогеномики подтверж дают участие ПНЖК семейства со-3 в регуляции экспрессии г

    нов, участвующих в обмене жиров и воспалении, за счет актива­ции факторов транскрипции.

    В последние годы делаются попытки определить адекватные уровни поступления ю-3 ПНЖК с питанием. В частности, показа­но, что для взрослого здорового человека употребление в составе пищи 1,1... 1,6 г/сут линоленовой кислоты полностью покрывает физиологические потребности в этом семействе жирных кислот.

    Основными пищевыми источниками ПНЖК семейства ю-3 являются льняное масло, грецкие орехи (табл. 2.9) и жир морских рыб (табл. 2.10).

    В настоящее время оптимальным соотношением в питании ПНЖК различных семейств считается следующее: ю-6:со-3 = = 6... 10:1.

    Таблица 2.9 Основные пищевые источники линоленовой кислоты

    Таблица 2.10 Основные пищевые источники ПНЖК семейства ю-3

    Порция, г

    Порция, обеспечивающая поступление 1 г ЭПК + ДГК, г

    Креветки

    Рыбий жир (лососевый)

    Фосфолипиды и стерины. В состав пищевых липидон входят такие значимые группы веществ, как фосфолипиды и стерины. К группе фосфолипидов относятся лецитин (фосфотидилхолин), кефалин и сфингомиелин. Фосфолипиды состоят из глицерина, этерифицированного полиненасыщенными жирными кислотами и фосфорной кислотой, которая соединена с азотистым основа­нием. Фосфолипиды, поступающие с пищей, способствуют аб­сорбции триглицеридов пищи за счет мицеллообразования. Они полностью расщепляются в клетках кишечника, поэтому для орга­низма имеет решающее значение их эндогенный синтез в печени и почках. Эндогенный синтез лецитина, в частности, лимитиро­ван поступлением с рационом ПНЖК и холина.

    Лецитин имеет большое значение в регулировании жирового обмена в печени - он относится к липотропным факторам пита­ния, препятствующим жировой инфильтрации печени за счет ак­тивизации транспорта нейтральных жиров из гепатоцитов. К пище­вым продуктам, содержащим максимальное количество предше­ственников синтеза лецитина и его самого, относятся нерафини­рованные растительные масла, яйца, морская рыба, печень, мас­ло сливочное, птица, а также фосфатидные концентраты, полу­чаемые как вторичное сырье при рафинировании масел и исполь­зуемые для обогащения пищевых продуктов.

    Стерины имеют сложное органическое строение: они представ­ляют из себя гидроароматические нейтральные спирты. В живот­ных жирах содержится холестерин, а в растительных - фитосте-рин Наибольшей биологической активностью среди фитостери-нов обладает р-ситостерин. Он способен оказывать гипохолесте-ринемическое действие, снижая абсорбцию холестерина в резуль­тате образования с последним в кишечнике неусваиваемых комп­лексов. Показано также участие ситостеринов в организации био­мембран. В растительных маслах содержится следующее количе­ство р-ситостерина, в 100 г продукта:

    Основным животным стерином является холестерин. В усло­виях сбалансированного питания его эндогенный синтез (био­синтез) из НЖК в печени составляет не менее 80 %, остальной холестерин поступает с пищей. Оптимальным уровнем его по­ступления с рационом считается 0,3 г/сут. В обмене холестерина важную роль играют витамины: аскорбиновая кислота, В 6 , В, 2 , фолиевая кислота, биофлавоноиды. Холестерин имеет ключевое

    значение в организации и нормальном функционировании био­мембран, синтезе стероидных гормонов, кальциферолов, желч­ных кислот.

    Последствия избыточного поступления жиров с пищей. Высокое поступление с пищей НЖК и собственно холестерина сопровож­дается повышением общей концентрации триглицеридов и жир­ных кислот в крови, увеличением количества циркулирующих в крови липопротеинов.

    Все это ведет к гиперлипидемии, а в дальнейшем к развитию дислипопротеинемии - базовому нарушению пищевого статуса, лежащего в основе развития атеросклероза, сахарного диабета и избыточной массы тела и ожирения. Дислипопротеинемия - это нарушение соотношения различных фракций липопротеидов и триглицеридов, циркулирующих в крови, ведущее в различных соотношениях к повышению как абсолютного, так и относитель­ного количества липопротеидов низкой и очень низкой плотно­сти (ЛПНП и ЛПОНП) и триглицеридов при одновременном снижении количества ЛПВП. Последние относятся к компонен­там, снижающим атерогенность холестерина.

    С биохимических позиций очень важно, что именно избыточ­ное поступление с пищей лауриновой, миристиновой и пальми­тиновой жирных кислот ведет к развитию гиперхолестеринемии и росту концентрации в крови наиболее атерогенных ЛПНП. Стеа­риновая кислота не участвует в построении ЛПНП и не обладает гиперхолестеринемическим эффектом.

    Одновременное с ростом ЛПНП снижение концентрации ЛПВП отмечено при чрезмерном употреблении с пищей транси­зомеров жирных кислот. В природных жирах они практически от­сутствуют, за исключением небольшого содержания в мясе и мо­локе коров и овец - у этих животных происходит частичная изо­меризация природных жирных кислот в желудке. Основная же масса трансизомеров образуется при гидрогенезации ПНЖК - разрыве двойных связей атомами водорода при производстве маргарина или так называемых мягких масел (состоящих из комбинации ра­стительных и животных жиров). Длинноцепочечные жирные кис­лоты пищи, поступающие в организм в виде трансизомеров, на­пример транс- lS : 1; не могут включаться в биосинтез биологиче­ски активных клеточных регуляторов (простагландинов и лейко-триенов), а используются лишь в качестве энергетического суб­страта.

    При поступлении жира в избыточном по сравнению с потреб­ностью организма количестве также стимулируется глюконеоге-нез. Последнее обстоятельство приводит к снижению степени ути­лизации «углеводной» глюкозы из крови, увеличению нагрузки на инсулярный аппарат и проявляется у здорового человека в ро­сте концентрации гликозилированного гемоглобина ai c .

    С гигиенических позиций, учитывая, что человек мс питается отдельными жирными кислотами, гиперлипидемия и дислипо-протеинемия, а также метаболическая гипергликемия должны рас­сматриваться как результат избыточного поступления с пищей всего объема жировых продуктов и продуктов, содержащих скрытый жир, независимо от их природы и жирно-кислотного состава.

    В природе не существует «идеального» с позиций оптимально­го питания источника жира. Жирно-кислотный состав всех ис­пользуемых растительных масел наряду со значительным содер­жанием МНЖК и ПНЖК включает в себя и существенные коли­чества среднецепочечных НЖК (10... 15 % и более).

    Морская рыба в настоящее время является единственным ис­точником жира, адекватное увеличение употребления которого взамен жира животного происхождения и растительного масла может рассматриваться как эволюционно оправданный шаг. При этом, однако, следует учитывать реальную возможность интенси­фикации прооксидантной нагрузки на организм, связанной с дей­ствием двух факторов:

      наличием относительно большого количества ПНЖК с вы­ сокой степенью ненасыщенности (пять и шесть двойных связей), обладающих в силу этого большой способностью к окислению;

      отсутствием в жире рыб основного антиоксиданта - вита­ мина Е.

    Немаловажной является проблема безопасности рыбного сы­рья в плане контроля над остаточными количествами токсичных элементов, полихлорированных бифенилов и других контаминан-тов, а также природных токсинов (это особенно актуально при возможном использовании нетрадиционных видов морских рыб и других морепродуктов).

    Еще один способ оптимизации жирно-кислотного состава пи­щевых продуктов связан с возможностями селекции и генной ин­женерии в рамках современной биотехнологии. Так, в результате обычной селекционной работы уже получены высокоолеиновое подсолнечное масло и низкоэруковое рапсовое. В настоящее время ведутся научно-практические разработки для создания на основе генной модификации масличных и зерновых культур (в первую оче­редь сои, рапса и кукурузы) с заданным составом жирных кислот.

    Учитывая возможные индивидуальные особенности обмена веществ, оптимальный уровень жира находится в интервале 20... 30 % от энергетической ценности рациона, т. е. не должен пре­вышать 35 г на 1000 ккал рациона. Для человека со средним уров­нем энергозатрат это соответствует примерно 70... 100 г жира в сутки.

    Большинство липидных соединений организма человека могут при необходимости быть синтезированы в обменных процессах из углеводов. Исключение составляют незаменимые полиненасыщен-

    ные жирные кислоты линолевая и линоленовая, входящие соот­ветственно в семейства со-6 и со-3. В этой связи нормируются как общее поступление ПНЖК: оно должно быть в интервале 3...7 % энергоценности рациона, так и потребность в линолевой кислоте: 6... 10 r/сут (это количество содержится в 1 столовой ложке расти­тельного масла). Норматив для линоленовой кислоты не установ­лен, но ее должно поступать не меньше 10% от содержания в пище линолевой кислоты.

    2-4. Углеводы и их значение в питании

    Углеводы являются основными энергонесущими макронутри-ентами в питании человека, обеспечивая 50...70 % общей энерге­тической Ценности рациона. Они способны при метаболизации образовывать макроэргические соединения, причем как в аэроб­ных, так и анаэробных условиях. В результате метаболизации 1 г углеводов ор гани3 м получает энергию, эквивалентную 4 ккал. Об­мен углевод ов тесно связан с обменом жиров и белков, что обес­печивает их взаимные превращения. При умеренном недостатке углеводов в питании депонированные жиры, а при глубоком де­фиците (менее 50 r/сут) и аминокислоты (как свободные, так и из состава Мышечных белков) вовлекаются в процесс глюконео-генеза, приводящий к получению необходимой организму энер­гии. В обратной ситуации происходит активация липонеогенеза и из лишних углеводов синтезируются жирные кислоты, отклады­вающиеся в депо.

    Наряду с основной энергетической функцией углеводы уча­ствуют в пластическом обмене. Глюкоза и ее метаболиты (сиало-вые кислоты, аминосахара) являются составными частями гли-копротеидов 5 к которым относятся большинство белковых соеди­нений крови (трансферрин, иммуноглобулины), ряд гормонов, ферментов, факторов свертывания крови. Гликопротеиды, а так­же гликолиггиды участвуют вместе с белками и липидами в струк­турной и Функциональной организации биомембран и играют при этом ведущу ю роль в процессах клеточной рецепции гормонов и других биоло гичес ки активных соединений и в межклеточном вза­имодействии, имеющем существенное значение для нормального клеточного роста, дифференцировки и иммунитета. Углеводы пищи также являются предшественниками гликогена и триглицеридов; они служат источником углеродного основания заменимых ами­нокислот, участвуют в построении коферментов, нуклеиновых кислот, аденозинтрифосфорной кислоты (АТФ) и других биоло­гически важных соединений. Углеводы оказывают антикетогенное действие, стимулируя окисление ацетилкоэнзима А, образующе­гося при окислении жирных кислот.

    Углеводы - это полиатомные альдегиде- и кетоспирты. Они образуются в растениях при фотосинтезе и поступают в организм главным образом с растительными продуктами. Однако все боль­шее значение в питании приобретают добавленные углеводы, ко­торые чаще всего представлены сахарозой (или смесями других Сахаров), получаемой промышленным способом и вводимой за­тем в пищевые рецептуры.

    Все углеводы делятся по степени полимеризации на простые и сложные. К простым относятся так называемые сахара - моноса­хариды: гексозы (глюкоза, фруктоза, галактоза), пентозы (ксило­за, рибоза, дезоксирибоза) и дисахариды (лактоза, мальтоза, га­лактоза, сахароза).

    Сложными углеводами являются олигосахариды, состоящие из нескольких (3...9) остатков моносахаридов (рафиноза, стахиоза, лактулоза, олигофруктоза) и полисахариды. Полисахариды пред­ставляют собой высокомолекулярные полимерные соединения, образованные из большого числа мономеров, в качестве которых выступают остатки моносахаридов. Полисахариды делятся на крах­мальные и некрахмальные, которые в свою очередь могут быть растворимыми и нерастворимыми.

    Моно- и дисахариды. Они обладают сладким вкусом и поэтому называются сахарами. Степень сладости различных Сахаров неоди­накова. Если сладость сахарозы принять за 100 %, то сладость дру­гих Сахаров составит, %:

    Фруктозы 173

    Глюкозы 81

    Мальтозы и галактозы 32

    Рафинозы 23

    Лактозы 16

    Полисахариды сладким вкусом не обладают.

    Природными источниками простых углеводов являются фрук­ты, ягоды, овощи, плоды, в некоторых из которых содержание Сахаров достигает 4... 17 % (табл. 2.11).

    Глюкоза (альдегидоспирт) является основным структурным мо­номером всех важнейших полисахаридов - крахмала, гликогена, целлюлозы. Она поступает с питанием изолированно в составе ягод, фруктов, плодов и овощей, а также в качестве компонента наиболее распространенных дисахаридов: сахарозы, мальтозы, лактозы. Глю­коза быстро и практически в полном объеме усваивается в желудоч­но-кишечном тракте, поступает в кровь и разносится ко всем орга­нам и тканям для окисления, сопряженного с образованием энер­гии. Уровень глюкозы в крови наряду с уровнем ряда аминокислот является сигналом для соответствующих структур головного мозга, моделирующих аппетит и пищевое поведение человека. Избыток глю­козы быстро превращается в депонирующиеся триглицериды.

    Таблица 2.11

    Фруктоза в отличие от глюкозы является кетоспиртом и обла­дает другой динамикой распределения и метаболизации в орга­низме. Она почти в два раза медленнее всасывается в кишечнике и в большей степени задерживается в печени. Фруктоза переходит в глюкозу в клеточных обменных процессах, но увеличение кон­центрации глюкозы в крови происходит при этом плавно и посте­пенно, с меньшим напряжением инсулярного аппарата. В то же время фруктоза по более короткому метаболическому пути по срав-

    нению с глюкозой вовлекается в процессы липонеогенеза и спо­собствует отложению жира в депо. Этим объясняются ряд новых фактов, полученных при изучении положительной динамики массы тела у лиц, регулярно употребляющих продукты, обогащенные пищевыми компонентами, содержащими фруктозу (мальтодекст-риновые кукурузные сиропы). Чрезмерное поступление фруктозы приводит к увеличению концентрации в крови С-пептида, харак­теризующего степень инсулинрезистентности при развитии сахар­ного диабета второго типа. Фруктоза содержится в пищевых про­дуктах как в свободном виде в меде и фруктах, так и в виде фрук-тозного полисахарида инулина в составе топинамбура (земляной груши), цикория и артишоков.

    Галактоза поступает в организм в составе молочного сахара (лактозы). В свободном виде она может находиться в некоторых ферментированных молочных продуктах, таких как йогурты. Га­лактоза превращается в печени в глюкозу.

    Основным промышленно производимым дисахаридом являет­ся сахароза, или столовый сахар. Сырьем для его производства слу­жат сахарная свекла (14...25% сахара) и сахарный тростник (10... 15% сахара). Натуральными источниками сахарозы в пита­нии являются дыни, арбузы, некоторые овощи, ягоды и фрукты. Сахароза легко усваивается и быстро распадается на глюкозу и фруктозу, которые затем вовлекаются в присущие им обменные

    процессы.

    Именно использование сахарозы в качестве существенного ком­понента многих продуктов (кондитерских изделий, конфет, дже­мов, десертов, мороженого, прохладительных напитков) приве­ло в настоящее время к увеличению доли моно- и дисахаридов в общем объеме поступающих углеводов в развитых странах до 50 % и выше (при рекомендуемых 20 %). В результате на фоне снижа­ющихся энергозатрат увеличивается алиментарная нагрузка на ин-сулярный аппарат, повышается уровень инсулина в крови, ин­тенсифицируется отложение жира в депо, нарушается липидный профиль крови. Все это способствует увеличению риска развития сахарного диабета, ожирения, атеросклероза и многочисленных заболеваний, базирующихся на перечисленных патологических

    состояниях.

    Лактоза является основным углеводом молока и молочных продуктов (состоит из молекул галактозы и глюкозы) и имеет большое значение в качестве источника углеводов для питания детей. У взрослых его доля в углеводном составе рациона значи­тельно снижается за счет широкого использования других источ­ников. К тому же у взрослых, а иногда и детей снижена актив­ность фермента лактазы, расщепляющего молочный сахар. Послед­ствиями непереносимости цельного молока и продуктов, содер­жащих его, являются диспептические расстройства. Использова-

    ние в питании кисло-мол очных продуктов (кефира, йогурта, сме­таны), а также творога и сыра, как правило, не вызывают подоб­ной клинической картины. Непереносимость молока отмечается у 30...35 % взрослого населения Европы, в то время как у жителей Африки - более чем у 75 %.

    Мальтоза, или солодовый сахар, в свободном виде встречается в меде, солоде, пиве, патоке и продуктах, изготавливаемых с до­бавлением патоки (кондитерские и хлебобулочные изделия). В орга­низме мальтоза представляет собой промежуточный продукт и обра­зуется в результате расщепления в желудочно-кишечном тракте полисахаридов. Затем онадиссимилируетдо двух молекул глюкозы. В некоторых фруктах (яблоках, грушах, персиках) и ряде ово­щей встречается спиртовая форма Сахаров - сорбит, являющий­ся восстановленной формой глюкозы. Он способен поддерживать уровень глюкозы в крови, не вызывая чувства голода и не напря­гая инсулярный аппарат. Сорбит и другие многоатомные спирты, такие как ксилит, маннит или их смеси, обладая сладким вкусом (30...40 % сладости глюкозы), используются для производства ши­рокого ассортимента пищевых продуктов, в первую очередь для питания больных сахарным диабетом, а также жевательной ре­зинки. К недостаткам многоатомных спиртов относится их влия­ние на кишечник, выражающееся в послабляющем эффекте и повышенном газообразовании.

    Олигосахариды. Олигосахариды, к которым относятся рафино-за, стахиоза, вербаскоза, в основном содержатся в бобовых и про­дуктах их технологической переработки, например в соевой муке, а также в незначительных количествах во многих овощах. Фрукто-олигосахариды встречаются в зерновых (пшенице, ржи), овощах (луке, чесноке, артишоках, спарже, ревене, цикории), а также в бананах и меде. К группе олигосахаридов также относятся мальто-декстрины, являющиеся основными компонентами промышлен-но производимых из полисахаридного сырья сиропов, паток. Од­ним из представителей олигосахаридов является лактулоза, обра­зующаяся из лактозы в процессе тепловой обработки молока, на­пример при выработке топленого и стерилизованного молока.

    Олигосахариды практически не расщепляются в тонком ки­шечнике человека из-за отсутствия соответствующих ферментов. По этой причине они обладают свойствами пищевых волокон. Некоторые Олигосахариды играют существенную роль в жизнедея­тельности нормальной микрофлоры толстого кишечника, что позволяет отнести их к пребиотикам - веществам, частично фер­ментирующимся некоторыми кишечными микроорганизмами и обеспечивающим поддержание нормального микробиоценоза ки­шечника.

    Полисахариды. Основным усваиваемым полисахаридом явля­ется крахмал - пищевая основа зерновых, бобовых и картофеля. 56

    Он представляет из себя сложный полимер (в качестве мономера, к котором находится глюкоза), состоящий из двух фракций: ами­лозы -- линейного полимера (200...2000 мономеров) и амило-пектина - разветвленного полимера (10000... 1 000000 мономе­ров). Именно соотношение этих двух фракций в различных сырь­евых источниках крахмала и определяет его различные физико-химические и технологические характеристики, в частности рас­творимость в воде при разной температуре.

    Для облегчения усвоения крахмала организмом продукт, со­держащий его, должен быть подвергнут тепловой обработке. При этом образуется крахмальный клейстер в явной форме, например кисель, или скрытом виде в составе пищевой композиции: каше, хлебе, макаронах, блюд из бобовых. Крахмальные полисахариды, поступившие с пищей в организм, подвергаются последователь­ной, начиная с ротовой полости, ферментации до мальтодекст-ринов, мальтозы и глюкозы с последующим практически пол­ным усвоением. Крахмал диссимилируется организмом достаточ­но длительный период и в отличие от моно- и дисахаридов не обеспечивает столь быстрое и выраженное повышение уровня глю­козы в крови. Однако основные пищевые источники крахмальных полисахаридов (хлеб, крупы, макароны, бобовые, картофель) поставляют в организм значительные количества аминокислот, витаминов и минеральных веществ и минимум жира. В то же время сахар не только не содержит незаменимых нутриентов, но и тре­бует для своей метаболизации в организме затрат дефицитных витаминов и других микронутриентов. Большинство сладких кон­дитерских изделий одновременно являются и источниками скры­того жира (торты, пирожные, вафли, печенье сдобное, шоко­лад).

    В процессе тепловой обработки (выпечки, отваривания) и при охлаждении может образовываться так называемый резистентный (устойчивый к перевариванию) крахмал, количество которого зависит как от степени тепловой нагрузки, так от содержания в крахмале амилозы. Устойчивые к перевариванию крахмалы содер­жатся и в натуральных продуктах - их максимальное количество найдено в бобовых и картофеле. Вместе с олигосахаридами и не­крахмальными полисахаридами они составляют углеводную груп­пу пищевых волокон.

    В последние годы увеличился объем используемых в пищевой промышленности так называемых модифицированных крахмалов. Они отличаются от природных форм хорошей растворимостью в воде (независимо от температуры). Это достигается их предваритель­ной производственной ферментацией с образованием в конечной композиции различных декстринов. Модифицированные крахма­лы используют в виде пищевых добавок для достижения ряда тех­нологических целей: придания продукту заданного внешнего вида

    и стабильной формы, достижения необходимой вязкости и одно­родности.

    Вторым перевариваемым полисахаридом является гликоген. Его пищевое значение невелико --с рационом поступает не более 10... 15 г гликогена в составе печени, мяса и рыбы. При созрева­нии мяса гликоген превращается в молочную кислоту.

    У человека излишки глюкозы в первую очередь (до метаболиче­ской трансформации в жир) превращаются именно в гликоген - единственный резервный углевод животных тканей. В организме человека общее содержание гликогена составляет около 500 г ("/ 3 в печени, остальное количество в мышцах) - это суточный за­пас углеводов, используемый при их глубоком дефиците в пита­нии. Длительный дефицит гликогена в печени ведет к дисфунк­ции гепатоцитов и ее жировой инфильтрации.

    Величина потребности в углеводах для человека определяет­ся их ведущей ролью в обеспечении организма энергией и не­желательностью синтеза глюкозы из жиров (а тем более из бел­ков) и находится в прямой зависимости от энергозатрат. Учи­тывая возможные индивидуальные особенности обмена веществ и уровень поступления жира, оптимальный уровень углеводов в питании находится в интервале 55...65 % энергоценности рацио­на, т.е. в среднем составляет 150 г на 1000 ккал рациона. Для человека со средним уровнем энергозатрат это соответствует при­мерно 300...400 г углеводов в сутки.

    Потребность человека с энергозатратами 2 800 ккал в углево­дах и их оптимальная групповая сбалансированность может быть в основном обеспечена:

    1) ежедневным потреблением".

      360 г хлеба и хлебобулочных изделий;

      300 г картофеля;

      400 г овощей, зелени, бобовых;

      200 г фруктов, ягод;

      не более 60 г сахара (чем меньше - тем лучше);

    2) еженедельным потреблением:

      175 г круп;

      140 г макаронных изделий.

    Оценку адекватности обеспечения реальной потребности в уг­леводах взрослого человека необходимо проводить с использова­нием индикаторных параметров пищевого статуса: индекса массы тела и уровня гликозилированного гемоглобина А 1с, повышение концентрации которого свидетельствует о длительном чрезмер­ном употреблении Сахаров, в том числе и у здорового человека.

    С позиций оценки возможного влияния углеводного компо­нента рациона на параметры пищевого статуса, характеризующие углеводный обмен, целесообразно использовать данные о так на­зываемом гликемическом индексе (ГИ) - процентном показателе,

    отражающем разницу в изменении концентрации глюкозы в сы­воротке крови в течение 2 ч после употребления какого-либо про­дукта по сравнению с аналогичным результатом после употребле­ния тест-продукта. В качестве тест-продукта обычно используют глюкозу (50 г) или пшеничный хлеб (порция, содержащая 50 г крахмала).

    Гликемический индекс продуктов (табл. 2.12) зависит от мно­гих пищевых факторов:

    Химической структуры и формы углеводов, входящих в со­став продукта;

    Таблица 2.12

    Порция, включающая в себя 50 г углеводов.


    Гликемический индекс некоторых продуктов

      наличия в пищевом продукте белков, жиров, непереваривае­ мых компонентов, органических кислот;

      способа кулинарной, в том числе тепловой, обработки про­ дукта.

    Сложные углеводы могут иметь ГИ, приближающийся к уров­ню простых углеводов и даже превосходящий его для некоторых моно- и дисахаров. Уровень гликемии после употребления крах-малсодержащих продуктов зависит в том числе от соотношения в крахмале амилозы и амилопектина: скорость переваривания и ус­вояемости амилопектина меньше, чем амилозы.

    Информация о величине ГИ продукта имеет значение не толь­ко для больных сахарным диабетом, но и полезна любому потре­бителю с позиций профилактики чрезмерной алиментарной гли­кемии. Данную информацию целесообразно выносить на этикетку продуктов, содержащих углеводы.

    Некрахмальные полисахариды. Некрахмальные полисахариды (НПС) -- это широко распространенные вещества растительной природы. В их химический состав входят смеси различных полиса­харидов, содержащие пентозы (ксилоза и арабиноза), гексозы (рамноза, манноза, глюкоза, галактоза) и уроновые кислоты. Ряд из них содержатся в клеточных оболочках, играя структурную роль, другие находятся в форме камедей и слизей внутри и на поверх­ности растительных клеток.

    Согласно классификации НПС делятся на несколько групп: целлюлоза, гемицеллюлоза, пектины, р-гликаны и гидроколлои­ды (камеди, слизи).

    Некрахмальные полисахариды не перевариваются в тонком кишечнике человека в связи с отсутствием соответствующих фер­ментных систем, по этой причине ранее они назывались «балласт­ными веществами», признаваясь лишними компонентами пищи, удаление которых в процессе технологической переработки про­довольственного сырья считалось вполне допустимым. Это оши­бочное мнение наряду с другими чисто технологическими причи­нами способствовало появлению широкого ассортимента рафи­нированных (очищенных от НПС) пищевых продуктов, име­ющих значительно более низкие показатели пищевой ценности. В настоящее время не вызывает сомнений, что НПС играют зна­чительную роль в жизнеобеспечении организма как на функцио­нальном, так и на метаболическом уровнях, что позволяет отнес­ти их к группе незаменимых факторов питания человека.

    У животных встречается в виде единственного исключения только одна группа неперевариваемых углеводных полимеров, состоящих из ацетилированного гликозамина, - хитин и хито-зан, пищевыми источниками которых является панцирь крабов и лобстеров (может использоваться в качестве пищевого обога­тителя).

    Аналогичными свойствами обладает также лигнин - водоне-растворимое соединение неуглеводной (полифенольной) приро­ды, входящее в состав клеточных оболочек многих растений и семян.

    Пищевые волокна. Все перечисленные выше НПС, лигнин и хитин в совокупности с олигосахаридами и неперевариваемым крахмалом в настоящее время объединяются в одну общую разно­родную группу пищевых веществ, названных пищевыми волокна­ми (ПВ). Таким образом, пищевые волокна - это съедобные ком­поненты пищи, главным образом растительной природы, устой­чивые к перевариванию и усвоению в тонком кишечнике, но под­вергающиеся полной или частичной ферментации в толстом ки­шечнике.

    Хорошими источниками ПВ в питании являются бобовые, зер­новые, орехи, а также фрукты, овощи и ягоды (табл. 2.13). Чем выше степень очистки (рафинирования) продовольственного сы­рья при технологической переработке, тем меньше ПВ (а также и многих михронутриентов) остается в конечном продукте. Этот факт наглядно иллюстрируется на примере продуктов перера­ботки зерна: в пшенице содержится 2,5 г ПВ (на 100 г); в пше­ничной муке, г: обойной - 1,9, 2-го сорта - 0,6, 1-го сорта - 0,2, высшего сорта - 0,1; в хлебе (в зависимости от сорта муки 0,1... 1,7); в овсе - ю,7 г; в овсяной крупе - 2,8, в овсяных хлопьях - 1,3.

    Таблица 2.13



    error: Контент защищен !!