Радиоактивный йод. Радиоактивные изотопы, образующиеся при делении(Дайджест)

Европейские СМИ продолжают обсуждать новости о радиоактивном йоде, который не так давно стали фиксировать станции наблюдения сразу в нескольких странах. Главный вопрос - что вызвало выброс этого радионуклида и где произошел выброс.

Известно, что впервые превышение йода-131 было зафиксировано в Норвегии, во вторую неделю января. Первой радионуклид зафиксировала исследовательская станция Сванховд на севере Норвегии,

которая расположена всего в нескольких сотнях метров от границы с Россией.

Позднее превышение было поймано на станции в финском городке Рованиеми. В течение последующих двух недель следы изотопа были обнаружены в других районах Европы — Польше, Чехии, Германии, Франции и Испании.

И хотя Норвегия стала первой страной, зафиксировавшей у себя радиоактивный изотоп, Франция первой проинформировала население об этом. «Первоначальные данные говорят о том, что первая фиксация произошла на севере Норвегии во вторую неделю января», — говорится в сообщении французского Института радиационной защиты и ядерной безопасности (IRSN).

Власти Норвегии заявили, что не стали оповещать об открытии из-за низкой концентрации вещества. «Данные в Сванховде были очень, очень низкими. Уровень загрязнения не вызвал обеспокоенности за людей и технику, поэтому мы не признали это достойной новостью», — заявила представитель норвежской службы радиационного контроля Астрид Лиланд. По ее словам, в стране действует сеть из 33 станций слежения, и любой человек сам может проверить данные.

Согласно опубликованным IRSN данным,концентрация йода, измеренная на севере Норвегии с 9 по 16 января, составляла 0,5 микробеккерелей на кубометр (Бк/м 3).

Во Франции же показатели колеблются от 01, до 0,31 Бк/м 3 . Самые высокие показатели были отмечены в Польше - почти 6 Бк/м 3 . Близость первого места обнаружения йода к российской границе сразу спровоцировала появление слухов о том, что причиной выброса могли стать секретные испытания ядерного оружия в российской Арктике, и возможно в районе Новой Земли, где СССР исторически испытывал различные заряды.

Йод-131 — радионуклид с периодом полураспада 8.04 суток, также называемый радиойодом, бета- и гамма-излучатель. Биологическое действие связано с особенностями функционирования щитовидной железы. Ее гормоны — тироксин и трийодтирояин — имеют в своем составе атомы йода, поэтому в норме щитовидная железа поглощает около половины поступающего в организм йода. Железа не отличает радиоактивные изотопы йода от стабильных, поэтому накопление в щитовидной железе больших количеств йода-131 ведет к радиационному поражению секреторного эпителия и к гипотиреозу — дисфункции щитовидной железы.

Как рассказал «Газете.Ru» источник в обнинском Институте проблем мониторинга (ИПМ) окружающей среды, основных источников загрязнения атмосферы радиоактивным йодом два — атомные электростанции и фармакологическое производство.

«Атомные станции выбрасывают радиоактивный йод. Он является составляющей газоаэрозольного выброса, технологического цикла любой атомной станции», — пояснил эксперт, однако по его словам, при выбросе происходит фильтрация, чтобы большинство короткоживущих изотопов успели распасться.

Известно, что после аварий на Чернобыльской станции и Фукусиме выбросы радиоактивного йода фиксировались специалистами в разных странах мира. Однако после таких аварий в атмосферу выбрасываются и, соответственно, фиксируются и другие радиоактивные изотопы, в том числе цезий.

В России мониторинг содержания радиоактивного йода ведется всего в двух точках — в Курске и Обнинске.
Зафиксированные в Европе выбросы — действительно исчезающе малые концентрации, учитывая существующие предельные показатели, установленные для йода. Так, в России предельная концентрация радиоактивного йода в атмосфере составляет 7,3 Бк/м 3

В миллион раз выше зафиксированного в Польше уровня.

«Эти уровни — детский сад. Это очень небольшие количества. Но если все станции мониторинга в этот период фиксировали концентрации йода в аэрозольной и молекулярной форме, где-то был источник, был выброс», — пояснил эксперт.

Между тем в самом Обнинске находящаяся там станция наблюдения ежемесячно фиксирует наличие йода-131 в атмосфере, это связано с расположенным там источником — НИФХИ имени Карпова. Это предприятие выпускает радиофармпрепараты на основе йода-131, которые используются для диагностики и лечения рака.

К версии, что источником выброса йода-131 было фармацевтическое производство, склоняются и ряд европейских экспертов. «Поскольку был детектирован только йод-131 и никаких других веществ, мы считаем, что он происходит от какой-то фармацевтической компании, производящей радиоактивные препараты», — пояснила Лиланд изданию Motherboard. «Если бы он пришел с реактора, мы фиксировали бы другие элементы в воздухе», — считает Дидье Шампьон, глава одного из подразделений IRSN.

Эксперты вспоминают, что подобная ситуация возникла в 2011 году, когда радиоактивный йод был зафиксирован сразу в нескольких европейских странах. Интересно, что лишь на прошлой неделе ученые , объяснившую выброс йода 2011 года. Они пришли к выводу, что утечка произошла из-за отказа фильтровальной системы в будапештском институте, производящем изотопы для медицинских целей.

Иод-131 (йод-131, 131 I) - искусственный радиоактивный изотоп иода . Период полураспада около 8 суток, механизм распада - бета-распад . Впервые получен в 1938 году в Беркли .

Является одним из значимых продуктов деления ядер урана , плутония и тория , составляя до 3 % продуктов деления ядер. При ядерных испытаниях и авариях ядерных реакторов является одним из основных короткоживущих радиоактивных загрязнителей природной среды. Представляет большую радиационную опасность для человека и животных в связи со способностью накапливаться в организме, замещая природный иод.

52 131 T e → 53 131 I + e − + ν ¯ e . {\displaystyle \mathrm {{}_{52}^{131}Te} \rightarrow \mathrm {{}_{53}^{131}I} +e^{-}+{\bar {\nu }}_{e}.}

В свою очередь теллур-131 образуется в природном теллуре при поглощении им нейтронов стабильным природным изотопом теллур-130, концентрация которого в природном теллуре составляет 34 % ат.:

52 130 T e + n → 52 131 T e . {\displaystyle \mathrm {{}_{52}^{130}Te} +n\rightarrow \mathrm {{}_{52}^{131}Te} .} 53 131 I → 54 131 X e + e − + ν ¯ e . {\displaystyle \mathrm {^{131}_{53}I} \rightarrow \mathrm {^{131}_{54}Xe} +e^{-}+{\bar {\nu }}_{e}.}

Получение

Основные количества 131 I получают в ядерных реакторах путём облучения теллуровых мишеней тепловыми нейтронами . Облучение природного теллура позволяет получить почти чистый иод-131 как единственный конечный изотоп с периодом полураспада более нескольких часов.

В России 131 I получают облучением на Ленинградской АЭС в реакторах РБМК . Химическое выделение 131 I из облученного теллура осуществляется в . Объем производства позволяет получить изотоп в количестве, достаточным для выполнения 2…3 тысяч медицинских процедур в неделю.

Иод-131 в окружающей среде

Выброс иода-131 в окружающую среду происходит в основном в результате ядерных испытаний и аварий на предприятиях атомной энергетики . В связи с коротким периодом полураспада, через несколько месяцев после такого выброса содержание иода-131 опускается ниже порога чувствительности детекторов.

Иод-131 считается наиболее опасным для здоровья людей нуклидом, образующимся при делении ядер. Это объясняется следующим:

  1. Относительно высоким содержанием иода-131 среди осколков деления (около 3 %).
  2. Период полураспада (8 суток), с одной стороны, достаточно велик, чтобы нуклид распространился по большим площадям, а с другой стороны, достаточно мал, чтобы обеспечить очень высокую удельную активность изотопа - примерно 4,5 ПБк /г .
  3. Высокая летучесть. При любых авариях ядерных реакторов в первую очередь в атмосферу улетучиваются инертные радиоактивные газы, затем - иод. Например, при аварии на ЧАЭС из реактора было выброшено 100 % инертных газов, 20 % иода, 10-13 % цезия и всего 2-3 % остальных элементов [ ] .
  4. Иод очень подвижен в природной среде и практически не образует нерастворимых соединений.
  5. Иод является жизненно важным микроэлементом , и, в то же время, - элементом, концентрация которого в пище и воде невелика. Поэтому все живые организмы выработали в процессе эволюции способность накапливать иод в своем теле.
  6. У человека бо́льшая часть иода в организме концентрируется в щитовидной железе, но имеющей небольшую массу по сравнению со массой тела (12-25 г). Поэтому даже относительно небольшое количество радиоактивного йода, поступившего в организм, приводит к высокому локальному облучению щитовидной железы.

Основным источником загрязнения атмосферы радиоактивным иодом являются атомные электростанции и фармакологическое производство .

Радиационные аварии

Оценка по радиологическому эквиваленту активности иода-131 принята для определения уровня ядерных событий по шкале INES .

Санитарные нормативы по содержанию иода-131

Профилактика

В случае попадания йода-131 в организм возможно вовлечение его в процесс обмена веществ. При этом йод задержится в организме на длительное время, увеличивая продолжительность облучения. У человека наибольшее накопление йода наблюдается в щитовидной железе. Чтобы минимизировать накопление радиоактивного йода в организме при радиоактивном загрязнении окружающей среды принимают препараты, насыщающие обмен веществ обычным стабильным йодом. Например, препарат йодида калия . При приеме калия йодида одновременно с поступлением радиоактивного йода защитный эффект составляет около 97 %; при приеме за 12 и 24 ч до контакта с радиоактивным загрязнением - 90 % и 70 % соответственно, при приеме через 1 и 3 ч после контакта - 85 % и 50 %, более чем через 6 ч - эффект незначительный. [ ]

Применение в медицине

Иод-131, как и некоторые другие радиоактивные изотопы иода ( 125 I , 132 I) применяются в медицине для диагностики и лечения некоторых заболеваний щитовидной железы :

Изотоп применяется для диагностики распространения и лучевой терапии нейробластомы , которая также способна накапливать некоторые препараты иода.

В России фармпрепараты на основе 131 I производит .

См. также

Примечания

  1. Audi G. , Wapstra A. H. , Thibault C. The AME2003 atomic mass evaluation (II). Tables, graphs, and references (англ.) // Nuclear Physics A . - 2003. - Vol. 729 . - P. 337-676 . -

Изотоп йода I-131 уже давно и успешно используется в диагностике и лечении заболеваний щитовидной железы. Но почему-то не только среди пациентов в нашей стране, а и среди медицинских работников существуют разные предрассудки и страхи по поводу метода радиойодтерапии. Это связано с редким использованием данного метода лечения в клинической практике и недостаточной осведомленности врачей в этом вопросе.

Что же скрывается под страшным названием "радиоактивный йод"?


Радиоактивный йод (I-131)
- это один из изотопов самого обычного йода (I-126). Изотоп - это разновидность атома химического элемента, которая имеет тот же порядковый номер, но различается своим массовым числом. Такое отличие делает атом изотопа нестабильным, что приводит к его распаду с радиоактивным излучением. В природе существует много изотопов одного и того же химического элемента, исключением не стал и йод.

В медицине применение нашли 2 изотопа радиоактивного йода
- I-131 и I-123. Йод с массовым числом 123 не имеет цитотоксического действия на клетки щитовидной железы и используется только в диагностических целях (сканирование ЩЗ).

I-131 обладает способностью к самопроизвольному распаду атома. Период полураспада составляет 8 суток. При этом образуется нейтральный атом ксенона, квант гамма-излучения и бета частица (электрон). Терапевтическое действие осуществляется именно благодаря бета частицам. Такие частицы имеют очень высокую скорость движения, но маленький пробег в тканях (до 2 мм). Таким образом, они проникают в биологические ткани (клетки ЩЗ) и разрушают клетку (цитотоксическое действие).

Благодаря тому, что йод накапливается в организме человека исключительно в клетках щитовидной железы , свое действие I-131 осуществляет только здесь, ни на какие другие ткани он не действует.

Гамма-излучение, которое образуется при радиоактивном распаде атома йода, проникает сквозь организм человека (имеет большой пробег, но маленькую энергию). Таким образом, оно не воздействует на клетки организма. Но может быть использовано в диагностических целях. Так можно определить, где еще в организме накопился йод с помощью специальной гамма-камеры, которая регистрирует такое излучение. Если такие очаги есть, то можно думать о существовании метастазов рака ЩЗ.

Терапию радиоактивным йодом назначают в 2 случаях:

  • при гиперпродукции гормонов ЩЗ (диффузный токсический зоб, тиреотоксикоз, аденома ЩЗ);
  • злокачественная опухоль ЩЗ (папиллярный и фолликулярный рак).
Терапия радиоактивным йодом относится к высокоэффективным и высокоселективным (влияние только на клетки щитовидки) методам лечения заболеваний ЩЗ. Она уже давно и активно применяется в США и Европе. Не нужно бояться такого лечения, ведь оно может подарить вам здоровую и длинную жизнь.

Йод-131 - радионуклид с периодом полураспада 8.04 сут., бета- и гамма-излучатель . Вследствие высокой летучести практически весь йод-131, имевшийся в реакторе (7,3 МКи), был выброшен в атмосферу. Его биологическое действие связано с особенностями функционирования щитовидной железы. Ее гормоны - тироксин и трийодтирояин - имеют в своем составе атомы йода. Поэтому в норме щитовидная железа поглощает около 50% поступающего в организм йода. Естественно, железа не отличает радиоактивные изотопы йода от стабильных. Щитовидная железа детей в три раза активнее поглощает попавший в организм радиойод. Кроме того, йод-131 легко проникает через плаценту и накапливается в железе плода.

Накопление в щитовидной железе больших количеств йода-131 ведет к дисфункции щитовидной железы. Возрастает также риск злокачественного перерождения тканей. Минимальная доза, при которой есть риск развития гипотиреоза у детей - 300 рад, у взрослых - 3400 рад. Минимальные дозы, при которых появляется риск развития опухолей щитовидной железы, находятся в диапазоне 10-100 рад. Наиболее велик риск при дозах 1200-1500 рад. У женщин риск развития опухолей в четыре раза выше, чем у мужчин, у детей в три-четыре раза выше, чем у взрослых.

Величина и скорость всасывания, накопление радионуклида в органах, скорость выведения из организма зависят от возраста, пола, содержания стабильного йода в диете и других факторов . В этой связи при поступлении в организм одинакового количества радиоактивного йода поглощенные дозы значительно различаются. Особенно большие дозы формируются в щитовидной железе детей, что связано с малыми размерами органа, и могу в 2-10 раз превышать дозы облучения железы у взрослых.

Эффективно предотвращает поступление радиоактивного йода в щитовидную железу прием препаратов стабильного йода. При этом железа полностью насыщается йодом и отвергает попавшие в организм радиоизотопы. Прием стабильного йода даже через 6 ч после разового поступления 131I может снизить потенциальную дозу на щитовидную железу примерно в два раза, но если отложить йодопрофилактику на сутки, эффект будет небольшим.

Поступление йода-131 в организм человека может произойти в основном двумя путями: ингаляционным, т.е. через легкие, и пероральным - через потребляемые молоко и листовые овощи.

Эффективный период полувыведения долгоживущих изотопов определяется в основном биологическим периодом полувыведения, короткоживущих – периодом полураспада. Биологический период полувыведения разнообразен – от нескольких часов (криптон, ксенон, радон) до нескольких лет (скандий, иттрий, цирконий, актиний). Эффективный период полувыведения колеблется от нескольких часов (натрий-24,медь-64), суток (йод-131, фосфор-23, сера-35), до десятков лет (радий-226, стронций-90).

Биологический период полувыведения йода-131 из целостного организма 138 суток, щитовидной железы-138, печени-7, селезенки-7, скелета-12 суток.

Отдалённые последствия – рак щитовидной железы.



error: Контент защищен !!