Биохимические особенности гормонов. Механизмы действия гормонов Гормоны биохимия лекция

Лекция № 13 РЕГУЛЯЦИЯ ОБМЕНА ВЕЩЕСТВ. БИОХИМИЯ ГОРМОНОВ. 1 МЕХАНИЗМ ДЕЙСТВИЯ ГОРМОНОВ ЧЕРЕЗ ц. АМФ и ц. ГМФ

Цель: Ознакомить с общими свойствами гормонов, первым механизмам действия гормонов, посредниками передачи действия гормонов внутри клетки

План: 1. Общие свойства гормонов 2. Первый механизм через ц. АМФ 3. Первый механизм через ц. ГМФ

Гормоны - это биологически активные вещества, образующиеся в железистых клетках, выделяющиеся в кровь или лимфу и регулирующие обмен веществ.

Ведущим звеном в адаптации организма является ЦНС и гипоталамо – гипофизарная система. ЦНС в ответ на раздражение посылает в гипоталамус и другие ткани в том числе на железы внутренней секреции, нервные импульсы в виде изменения концентрации ионов и медиаторов.

Гипоталамус выделяет особые вещества – нейросекретины или рилизинг- факторы двух видов: 1 Либерины, ускоряющие выделение тропных гипофизом 2: Статины угнетающие их выделение.

ГИПОТАЛАМУС окситоцин, вазопрессин АДЕНОГИПОФИЗ СТГ, ТТГ, АКТГ, ФСГ, ЛТГ, пролактин ЭПИФИЗ мелатонин ОКОЛОЩИТОВИД НАЯ ЖЕЛЕЗА паратгормон СЕРДЦЕ: натрий уретический фактор ЩИТОВИДНАЯ ЖЕЛЕЗА Т 3 , тироксин, кальцитонин ТИМУС тимозин НАДПОЧЕЧНИКИ катехоламиндер, кортикостероидтар, жыныс гормондары ПОЧКИ Эритропоэтин, ренин, простагландин ПИЩЕВАРИТЕЛЬ НЫЙ ТРАКТ Гастрин, секретин ПОДЖЕЛУДОЧНАЯ ЖЕЛЕЗА инсулин, глюкагон ПОЛОВЫЕ ЖЕЛЕЗЫ Эстрадиол, прогестерон, тестостерон, релаксин, ингибин, хорионический гонадотропин Эндокринная система

Классификация гормонов I. Белково-пептидные гормоны 1) Гормоны -простые белки (инсулин, гормон роста, ЛТГ, паратгормон) 2) Гормоны - сложные белки (ТТГ, ФСГ, ЛГ) 3)Гормоны- полипептиды (глюкагон, АКТГ, МСГ, кальцитонин, вазопрессин, окситоцин) Некоторые из перечисленных гормонов образуются из неактивных предшественников - прогормонов (например, инсулин и глюкагон).

II. Стероидные гормоны – производные холестерина (кортикостероиды, половые гормоны: мужские, женские). III. Гормоны – производные аминокислот (тироксин, трийодтиронин, адреналин, норадреналин).

Общие свойства гормонов -строгая специфичность биологического действия; -высокая биологическая активность; секретируемость; - дистантность действия; - гормоны могут находиться в крови, как в свободном, так и в соединенном с определёнными белками состоянии; - кратковременность действия; - все гормоны проявляют свое действие через рецепторы.

Рецепторы гормонов (РЦ) По химической природе рецепторы – это белки, истинные гликопротеиды Ткани, в которых имеются рецепторы для данного гормона называются ткани-мишени (клетки-мишени).

Биологическое действие гормона зависит не только от его содержания в крови, но и от количества и функционального состояния рецепторов, а также от уровня функционирования пострецепторного механизма

Все известные гормоны по механизму действия подразделяются на 3 группы: I) Мембранно-цитозольный механизм гормоны, действующие путем изменения активности внутриклеточных ферментов. Эти гормоны язываются с рецепторами на наружной поверхности мембраны клетки-мишени, внутри клетки не входят и действуют через вторичных посредников (мессенджеров): ц-АМФ, ц-ГМФ, ионы кальция, инозитолтрифосфат.

2. Гормоны, действующие путем изменения скорости синтеза белков и ферментов. (Цитозольный.) Эти гормоны связываются с внутриклеточными рецепторами: цитозольными, ядерными или рецепторами органоидов. К данным гормонам относятся стероидные и тироидные гормоны

3. Гормоны, действующие путем изменения проницаемости плазматической мембраны (мембранный.) К таким гормонам относятся инсулин, СТГ, ЛТГ, АДГ.

1 -й МЕХАНИЗМ Аденилатциклазная система состоит из 3 -х частей: I - узнающая часть, представленная рецептором, расположенным на наружной поверхности клеточной мембраны, . II часть - сопрягающий белок (G-белок). В неактивном виде G-белок связан своей субъединицей с ГДФ.

III часть - каталитическая является ферментом аденилатциклазой аденилатциклаза АТФ Н 4 Р 2 О 7 + ц. АМФ взаимодействует с протеинкиназой А, которая состоит из 4 -х субъединиц: 2 -х регуляторных, 2 -х каталитических.

Протеинкиназа А катализирует перенос от АТФ фосфатной группы на ОН-группы серина и треонина ряда белков и ферментов клетокмишеней, т. е. является серинтреонин-киназой АТФ АДФ Белок белок-Р

Белками, на которые будут переноситься остатки фосфорной кислоты при фосфорилировании с участием протеинкиназы А, могут быть некоторые ферменты (например, фосфорилаза, липаза, гликогенсинтетаза, метилтрансферазы), белки рибосом, ядер, мембран. При фосфорилировании неактивных форм фосфорилазы и липазы наблюдаются конформационные изменения в их молекулах, что ведет к повышению их активности.

Фосфорилирование гликогенсинтетазы, наоборот, тормозит ее активность. Присоединение фосфорной кислоты к белкам рибосом повышает синтез белка.

Если фосфорная кислота присоединяется к ядерным белкам, то связь между белком (гистоном) и ДНК ослабляется, что ведет к усилению транскрипции, а значит и к повышенному синтезу белков. Фосфорилирование белков мембран повышает их проницаемость для ряда веществ, в частности для ионов.

Под действием гормонов, действующих через ц. АМФ, ускоряется: 1. Гликогенолиз путем фосфоролиза, 2. липолиз, 3. синтез белков, 4. транспорт ионов через мембраны, 5. Ингибируется гликогенез

По этому механизму действуют гормоны через гуанилатциклазную систему. Гуанилатциклаза имеет мембраносвязанную и растворимую (цитозольную) формы Мембраносвязанная форма состоит из 3 -х участков: 1 - узнающего (на внешней стороне плазматической мембраны)

2 - го - Трансмембранного 3 -го - Каталитического Мембранносвязанная форма фермента активируется через рецепторы короткими пептидами, например, предсердным натрий-уретическим фактором.

Натрий-уретический фактор синтезируется в предсердии в ответ на повышение объема циркулирующий крови, поступает в почки, активирует в них гуанилатциклазу, что приводит к повышению экскреции натрия и воды

Гладкомышечные клетки также содержат гуанилатциклазную систему через которую осуществляется их расслабление. Действуют через эту систему вазодилятаторы, как эндогенные (оксид азота), так и экзогенные

В эпителиальных клетках кишечника активатором гуанилатциклазы может быть бактериальный эндотоксин, который приводит к замедлению всасывания воды и диареи. Цитозольная форма гуанилатциклазыгемсодержащий фермент

В регуляции его активности участвуют нитровазодилятаторы, активные формы кислорода (оксид азота) продукты ПОЛ Под действием гуанилатциклазы из ГТФ образуется ц. ГМФ Ц-ГМФ действует на протеинкиназу G состоящую из двух субъединиц

ц. ГМФ связывается с регуляторными участками ПК G активируя ее. ПКА и ПК G являются серин- треонинкиназами, и ускоряя фосфорилирование серина и треонина разных белков и ферментов оказывают различное биологическое действие.

1) под действием натрий-уретического фактора усиливается диурез (этот гормон-пептид образуется в предсердиях) 2) под действием бактериальных эндотоксинов развивается диарея

Один и тот же гормон может действовать и через ц. ГМФ и через ц. АМФ. Эффект зависит от того с каким рецептором связывается гормон. Например, адреналин может связываться как с альфа, так и с бетта – рецепторами.

Образование комплекса адреналина с бетта- рецепторами ведет к образованию ц. АМФ. Образование комплекса адреналина с альфа- рецепторами ведет к образованию ц. ГМФ. Эффекты, оказываемые адреналином будут различными.

ПК G повышает активность гликогенситетазы, тормозит агрегацию тромбоцитов, активирует фосфолипазу С, освобождая Са из его депо. Т. о. , по своему действию ц. ГМФ является антагонистом ц. АМФ

3) под действием оксида азота происходит расслабление гладкомышечных клеток сосудов (что используется в медицине, так как ряд нитропрепаратов, таких как нитроглицерин, используются для снятия спазмов сосудов)

Снятие сигнала гормона, действующего через ц. АМФ и ц. ГМФ, происходит следующим образом: 1. гормон быстро разрушается, и, следовательно, разрушается комплекс гормон-рецептор

2. для снятия гормонального сигнала в клетках существует особый фермент фосфодиэстераза, который превращает циклические нуклеотиды в нуклеозидмонофосфаты (адениловую и гуаниловую кислоты соответственно)

Т. Ш. Шарманов, С. М. Плешкова «Метаболические основы питания с курсом общей биохимии» , Алматы, 1998 г. С. Тапбергенов «Медицинская биохимия» , Астана, 2001 г. С. Сеитов «Биохимия» , Алматы, 2001 г. Стр 342 -352, 369 - 562 В. Дж. Маршал «Клиническая биохимия» , 2000 г. Н. Р. Аблаев Биохимия в схемах и рисунках, Алматы 2005 г. Стр 199 -212 Биохимия. Краткий курс с упражнениями и задачами. Под ред. проф. Е. С. Северина, А. Я. Николаева, М. , 2002 г. Северин Е. С. «Биохимия» 2008, Москва, стр 534 -603 Березов Т. Т. , Коровкин Б. Ф. 2002 «Биологическая химия» , стр 248 -298.

Контрольные вопросы: 1. Общие свойства гормонов 2. Классификация гормонов 3. Посредники действия гормонов первого механизма 4. Роль ц АМФ и ц ГМФ

Лекция № 14 Регуляция обмена веществ Первый механизм действия гормонов через ионы кальция, ДАГ и ИТФ. Второй и третий механизмы действия.

Ознакомить с особенностями действия гормонов через посредники: ионы кальция, ДАГ, ИТФ, действие стероидных гормонов- второй механизм, мембранным механизмом Цель:

Посредники действия гормонов – ионы кальция, ДАГ, ИТФ Второй механизм действия Особенности действия гормонов по третьему механизму. План:

Внутри клетки концентрация ионов кальция ничтожно мала (10¯ 7 моль/л), а снаружи клетки и внутри органоидов выше (10¯ 3 моль/л).

Поступление кальция из внешней среды внутрь клетки осуществляется по кальциевым каналам мембраны. Поток кальция регулируется Са-зависимой АТФазой мембраны, в осуществлении ее функции регулирующую роль могут выполнять инозитолтрифосфат (IP 3) и инсулин.

Внутри клетки ионы Са 2+ депонируются в матриксе митохондрий и эндоплазматическом ретикулуме. Са 2+, поступающий в цитоплазму из внешней среды или из внутриклеточных депо, взаимодействует с Са 2+-зависимой кальмодулинкиназой.

Кальций связывается с регуляторной частью фермента, это кальцийсвязывающий белок – кальмодулин, при этом происходит активация фермента.

Кальмодулин имеет несколько центров (до 4 -х) для связывания с ионами кальция или магния. В покое кальмодулин связан с магнием, при увеличении концентрации кальция в клетке, кальций вытесняет магний.

При значительном увеличении кальция образуется комплекс 4 Са 2+кальмодулин, который активирует гуанилатциклазу и фосфодиэстеразу ц. АМФ.

Действие гормонов через ионы кальция часто сочетается с использованием в качестве посредника производных фосфатидилинозитола. Рецептор в таких случаях находится в комплексе с Gбелком и при взаимодействии рецептора с гормоном (например, ТТГ, пролактин, СТГ)

происходит активация мембраносвязанного фермента фосфолипазы С, которая ускоряет реакцию распада фосфатидилинозитол 4, 5 -дифосфата с образованием ДАГ и инозитол-1, 4, 5 -трифосфата.

ДАГ и инозитолтрифосфат являются вторичными посредниками в действии соответствующих гормонов. ДАГ вызывает активацию протеинкиназы С, которая, в свою очередь, вызывает фосфорилирование белков ядер, тем самым, усиливается пролиферация клеток-мишеней.


Гормоны, действующие путем изменения проницаемости плазматической мембраны (мембранный.) для различных субстратов (аминокислоты, глюкоза, глицерин и др.)

Эти гормоны связываются с рецепторами плазматических мембран и свое действие опосредуют через тирозинкиназно-фосфатазную систему.

При этом происходит изменение активности внутриклеточных ферментов, сопровождающееся активацией белков-транспортеров и ионных каналов. К таким гормонам относятся инсулин, СТГ, ЛТГ, АДГ.

Гормоны СТГ, ЛДГ образуя гормонрецепторный комплекс активируют цитозольную тирозин-киназу, которая действует подобно мембраносвязанной, активируется фосфолипаза С, что ведет к мобилизации Са +2 и активированию протеинкиназы С.

АДГ действуя через ц. АМФ, вызывает перемещение водных каналов (белковаквапоринов), усиливается реабсорбция воды в почках, снижается выделение мочи, т. е АДГ увеличивает проницаемость мембран клетокмишеней для воды.

Т. Ш. Шарманов, С. М. Плешкова «Метаболические основы питания с курсом общей биохимии» , Алматы, 1998 г. С. Тапбергенов «Медицинская биохимия» , Астана, 2001 г. С. Сеитов «Биохимия» , Алматы, 2001 г. Стр 342 -352, 369 - 562 В. Дж. Маршал «Клиническая биохимия» , 2000 г. Н. Р. Аблаев Биохимия в схемах и рисунках, Алматы 2005 г. Стр 199 -212 Биохимия. Краткий курс с упражнениями и задачами. Под ред. проф. Е. С. Северина, А. Я. Николаева, М. , 2002 г. Северин Е. С. «Биохимия» 2008, Москва, стр 534 -603 Березов Т. Т. , Коровкин Б. Ф. «Биологическая химия» , стр 248298. Литература:

Контрольные вопросы: 1. Роль ц. ГМФ в механизме действия гормонов 2. Роль Са и ИТФ в механизме действия гормонов 3. Второй механизм – изменение скорости синтеза белков- ферментов 4. Третий механизм – изменение механизма проницаемости клеточной мембраны.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Биохимия гормонов

Введение

Гормоны - органические биологические вещества, вырабатываемые в эндокринных железах или клетках, транспортируемые кровью и оказывающие регуляторное действие на обменные процессы и физиологические функции.

Гормоны являются первичными посредниками между центральной нервной системой и тканевыми процессами. Термин гормоны 1905 году ввели ученые Бейлис и Старлинг. К эндокринным железам относится гипоталамус, гипофиз, эпифиз, тимус, щитовидная железа, паращитовидная железа, поджелудочная железа, надпочечники, половые железы и диффузная нейроэндокринная система. Единый принцип номенклатуры гормонов отсутствует. Их называют по месту образования (инсулин от insula-островок), по физиологическому эффекту (вазопрессин), гормоны передней доли гипофиза имеют окончание - тропин, окончание - либерин и - статин указывает на гипоталамические гормоны.

1. Классификация гормонов по их химической природе

По химической природе гормоны делят на 3 группы.

I. Белково-пептидные гормоны.

a) Простые белки (соматотропин, инсулин)

b) Пептиды (кортикотропин, меланотропин, кальцитонин)

c) Сложные белки (чаще гликопротеиды - тиреотропин, гонадотропин)

II. Гормоны - производные отдельных аминокислот (тироксин, адреналин)

III. Стероидные гормоны (производные холестерина - кортикостероиды, андрогены, эстрогены)

Химическая природа гормонов определяет особенности их метаболизма.

2. Обмен гормонов

Синтез гормонов. Гормоны белковой природы синтезируются по законам трансляции. Гормоны - производные аминокислот синтезируются путём химической модификации аминокислот. Стероидные гормоны образуются путём химической модификации холестерина. Некоторые гормоны синтезируются в активной форме(адреналин), другие синтезируются в виде неактивных предшественников (препроинсулин). Некоторые гормоны могут активироваться за пределами эндокринной железы. Например, тестостерон в предстательной железе переходит в более активный дигидротестостерон. Синтез большинства гормонов регулируется по принципу обратной связи (авторегуляция)

Под действием импульсов ЦНС в гипоталамусе синтезируется либерины (кортиколиберин, тиреолиберин, соматолиберин, пролактолиберин, гонадолиберин), которые активируют функцию передней доли гипофиза, и статины, тормозящие функцию передней доли гипофиза (соматостатин, пролактостатин, меланостатин). Либерины и статины регулируют выработку тропных гормонов передней доли гипофиза. Тропины передней доли гипофиза, в свою очередь, активируют функцию периферических эндокринных желез, которые вырабатывают соответствующие гормоны. Высокая концентрация гормонов тормозит либо выработку тропных гормонов, либо выработку либеринов (отрицательная обратная связь).

При нарушении регуляции синтеза гормонов может возникать либо гиперфункция, либо гипофункция.

Транспорт гормонов. Водорастворимые гормоны (белково-пептидные гормоны, гормоны - производные аминокислот (исключая тироксин)) транспортируются свободно в виде водных растворов. Водонерастворимые (тироксин, стероидные гормоны) транспортируются в комплексе с транспортными белками. Например, кортикостероиды транспортируются белком транскортином, тироксин - тироксинсвязывающим белком. Белковосвязанные формы гормона расцениваются как определённое депо гормонов. Концентрация гормонов в плазме крови очень мала, находится в диапазоне 10 -15 -10 -19 моль.

Циркулирующие в крови гормоны оказывают эффект на определенные ткани - мишени , в которых имеются рецепторы к соответствующим гормонам. Рецепторы чаще всего являются олигомерными гликопротеидами или липопротеидами. Рецепторы к различным гормонам могут располагаться или на поверхности клеток, или внутри клеток. Количество рецепторов, их активность может изменяться под действием различных факторов.

Катаболизм гормонов. Гормоны белковой природы распадаются до аминокислот, аммиака, мочевины. Гормоны - производные аминокислот инактивируются различными способами - дезаминирование, отщепление йода, окисление, разрыв кольца. Стероидные гормоны инактивируются путём окислительно-восстановительных превращений без разрыва стероидного кольца, путём реакции конъюгирования с серной кислотой и глюкуроновой кислотой.

3. Механизмы действия гормонов

Различают несколько механизмов реализации гормонального сигнала для водорастворимых и водонерастворимых гормонов.

Все гормоны оказывают три конечных эффекта :

1) изменение количества белков и ферментов за счёт изменения скорости их синтеза.

2) изменение активности имеющихся в клетки ферментов

3) изменение проницаемости клеточных мембран

Цитозольный механизм действия гидрофобных (липофильных) гормонов. . Липофильные гормоны способны проникать в клетку через клеточную мембрану, поэтому рецепторы для них располагаются внутриклеточно в цитозоле, на митохондриях, на поверхности ядра. Рецепторы гормонов чаще всего включают 2 домена: для связывания с гормоном и для связывания с ДНК. Рецептор при взаимодействии с гормоном изменяет свою структуру, освобождается от шаперонов, в результате чего гормон - рецепторный комплекс приобретает способность проникать внутрь ядра и взаимодействовать с определёнными участками ДНК. Это, в свою очередь, ведёт к изменению скорости транскрипции (синтез РНК), а вследствие этого меняется и скорость трансляции (синтез белка).

Мембранный механизм действия водорастворимых гормонов.

Водорастворимые гормоны не способны проникать через цитоплазматическую мембрану. Рецепторы для данной группы гормонов располагаются на поверхности клеточной мембраны. Поскольку гормоны не проходят внутрь клеток, между ними и внутриклеточными процессами необходим вторичный посредник, который передаёт гормональный сигнал внутрь клетки. В качестве вторичных посредников могут служить инозитолсодержащие фосфолипиды, ионы кальция, циклические нуклеотиды.

Циклические нуклеотиды - цАМФ, цГМФ - вторичные посредники

Гормон взаимодействует с рецептором и образует гормон - рецепторный комплекс, в котором меняется конформация рецептора. Это, в свою очередь, изменяет конформацию мембранного ГТФ - зависимого белка (G-белка) и ведёт к активации мембранного фермента аденилатциклазы, который переводит АТФ в цАМФ. Внутриклеточный циклический АМФ служит вторичным посредником. Он активирует внутриклеточные ферменты протеинкиназы, которые катализируют фосфорилирование различных внутриклеточных белков (ферментов, мембранных белков), что приводит к реализации конечного эффекта гормона. Эффект гормона «выключается» под действием фермента фосфодиэстеразы, разрушающей цАМФ, и ферментов фосфатаз, дефосфорилирующих белки.

Ионы кальция - вторичные посредники.

Взаимодействие гормона с рецептором повышает проницаемость кальциевых каналов клеточной мембраны, и внеклеточный кальций поступает в цитозоль. В клетках ионы Са 2+ взаимодействуют с регуляторным белком кальмодулином. Комплекс кальций-кальмодулин активирует кальцийзависимые протеинкиназы, которые активируют фосфолирирование различных белков и приводят к конечным эффектам.

Инозитолсодержащие фосфолипиды - вторичные посредники.

Образование гормон-рецепторного комплекса активирует в клеточной мембране фосфолипазу С, которая расщепляет фосфатидилинозит на вторичные посредники диацилглицерин (ДАГ) и инозитол-трифосфат (ИФ 3). ДАГ и ИФ 3 активируют выход Са 2+ из внутриклеточных депо в цитозоль. Ионы кальция взаимодействуют с кальмодулином, что активирует протеинкиназы и последующее фосфолирирование белков, сопровождающееся конечными эффектами гормона.

4. Краткая характеристика гормонов

Белково-пептидные гормоны

Гормоны гипофиза

Гормонами передней доли гипофиза являются соматотропин, пролактин (простые белки), тиреотропин, фоллиторопин, лютропин (гликопротеиды), кортикотропин, липотропин (пептиды).

Соматотропин - белок, включающий около 200 аминокислот. Обладает выраженным анаболическим действием, активирует глюконеогенез, синтез нуклеиновых кислот, белков, в частности, коллагена, синтез гликозаминогликанов. Соматотропин вызывает гипергликемический эффект, усиливает липолиз.

Гипофункция у детей ведёт к гипофизарной карликовости (нанизм). Гиперфункция у детей сопровождается гигантизмом, а у взрослых акромегалиёй.

Пролактин - гормон белковой природы. Его продукция активируется в период лактации. Пролактин стимулирует: маммогенез, лактопоэз, эритропоэз

Фоллитропин - гликопротеид, определяет цикличность созревания фолликулов, выработку эстрогенов у женщин. В мужском организме он стимулирует сперматогенез.

Лютропин - гликопротеид, в женском организме способствует формированию желтого тела и выработке прогестерона, в мужском организме стимулирует сперматогенез и продукцию андрогенов.

Тиреотропин - гликопротеид, стимулирует развитие щитовидной железы, активирует синтез белков, ферментов.

Кортикотропин - пептид, включающий 39 аминокислот, активирует созревание надпочечников и выработку кортикостероидов из холестерина. Гиперфункция - синдром Иценко-Кушинга, проявляется гипергликемией, гипертензией, остеопорозом, перераспределением жиров с накоплением их на лице и груди.

Липотропин включает в свой состав около 100 аминокислот, стимулирует распад жиров, служит источником эндорфинов. Гиперфункция сопровождается гипофизарной кахексией, гипофункция - гипофизарным ожирением.

К гормонам средней доли гипофиза относится меланотропин (меланоцитостимулирующий гормон). Он является пептидом, стимулирует формирование меланоцитов и синтез в них меланинов, которые обладают фотопротекторным действием и являются антиоксидантами.

К гормонам задней доли гипофиза относятся вазопрессин (антидиуретический гормон) и окситоцин. Данные гормоны являются нейросекретами, они синтезируются в гипоталамических ядрах, а затем перемещаются в заднюю долю гипофиза. Оба гормона состоят из 9 аминокислот.

Вазопрессин регулирует водный обмен, усиливает в почках синтез белка аквапорина и реабсорбцию воды в почечных канальцах. Вазопрессин суживает сосуды и повышает артериальное давление. Недостаток гормона приводит к заболеванию несахарный диабет, проявляющийся резким увеличением диуреза.

Окситоцин стимулирует сокращение мускулатуры матки, сокращает гладкую мускулатуру молочных желез, усиливает отделения молока. Окситоцин активирует синтез липидов.

Гормоны паращитовидных желез

Гормонами паращитовидных желез являются паратгормон, кальцитонин, участвующие в регуляции кальций - фосфорного обмена.

Паратгормон - белок, включает в свой состав 84 аминокислоты, синтезируется в виде неактивного предшественника. Паратгормон повышает уровень кальция в крови и снижает содержание фосфора. Повышение уровня кальция в крови под действием паратгормона происходит благодаря его трём основным эффектам:

Усиливает «вымывание» кальция из костной ткани с одновременным обновлением органического матрикса кости,

Повышает задержку кальция в почках,

Вместе с витамином D 3 усиливает синтез в кишечнике кальций-связывающего белка и всасывание кальция из пищевых продуктов.

При гипофункции паратгормона наблюдается гипокальциемия, гиперфосфатемия, мышечные судороги, нарушение работы дыхательной мускулатуры.

При гиперфункции паратгормона наблюдаются гиперкальциемия, остеопороз, нефрокальциноз, фосфатурия.

Кальцитонин - пептид, включающий в свой состав 32 аминокислоты. В отношении кальциевого обмена он является антагонистом паратгормона, т.е. снижает уровень кальция и фосфора в крови в основном за счёт уменьшения резорбции кальция из костной ткани

Гормоны поджелудочной железы

В поджелудочной железе вырабатываются гормоны инсулин, глюкагон, а также соматостатин, панкреатический полипептид

Инсулин - белок, состоит из 51 аминокислоты, входящие в 2 полипептидные цепи. Он синтезируется в в - клетках островков в виде предшественника препроинсулина, а затем подвергается частичному протеолизу. Инсулин регулирует все виды обмена (белковый, липидный, углеводный), в целом оказывает анаболическое действие. Влияние инсулина на углеводный обмен проявляется в увеличении проницаемости тканей для глюкозы, активировании фермента гексокиназы, усилении использования глюкозы в тканях. Инсулин повышает окисление глюкозы, её использование на синтез белков, жиров, вследствие чего развивается гипогликемия. Инсулин активирует липогенез, тормозит липолиз, проявляет антикетогенное действие. Инсулин усиливает синтез белков и нуклеиновых кислот.

Гипофункция сопровождается развитием сахарного диабета, который проявляется гипергликемией, глюкозурией, ацетонурией, отрицательным азотистым балансом, полиурией, обезвоживанием организма (смотри также «Патология углеводного обмена»).

Глюкагон - гормон пептидной природы, состоит из 29 аминокислот, синтезируется в б - клетках островков поджелудочной железы. Он обладает гипергликемическим действием, в основном за счёт усиления фосфоролитического распада гликогена печени до глюкозы. Глюкагон активирует липолиз, активирует катаболизм белков.

Гормоны вилочкой железы

Тимус является органом лимфопоэза, тимопоэза и органом выработки гормонов, определяющих иммунные процессы в организме. Эта железа активна в детском возрасте, а к отрочеству происходит её инволюция. Основные гормоны вилочковой железы имеют пептидную природу. К ним относятся:

· б, в - тимозины - определяют пролиферацию Т-лимфоцитов;

· I, II - т имопоэтины - усиливают созревание Т-лимфоцитов, блокируют нервно - мышечную возбудимость;

· тимусный гуморальный фактор - способствует дифференцировке Т-лимфоцитов на киллеры, хелперы, супрессоры;

· лимфоцитостимулирующий гормон - усиливает образование антител;

· тимусный гомеостатический гормон - является синергистом соматотропина и антагонистом кортикотропина и гонадотропина, и поэтому тормозит преждевременное половое созревание.

При гипофункции тимуса развиваются иммунодефицитные состояния. При гиперфункции возникают аутоиммунные заболевания.

Гормоны щитовидной железы

В щитовидной железе синтезируются тиреоидные гормоны трийодтиронин (Т 3), тироксин (Т 4) и пептидный гормон кальцитонин.

Синтез тиреоидных гормонов проходит несколько стадий:

· поглощение I щитовидной железой за счет «йодного насоса»;

· окисление иодидов в молекулярную форму при участии фермента йодидпероксидазы

2I - + 2Н*+Н 2 О 2 >I 2

· органификация йода - т.е. включение йода в состав аминокислоты тирозина, находящейся в тиреоглобулине щитовидной железы. (сначала образуется монойодтиронин, а затем дийодтиронин);

· конденсация 2-х молекул дийодтиронина;

· гидролиз Т 4 из тиреоглобулина.

Тиреоидные гормоны влияют на энергетический обмен, повышают потребление кислорода, синтез АТФ, для многочисленных биосинтетических процессов, для работы Na-К-насоса. В целом они активируют процессы пролиферации, дифференцировки, активируют гемопоэз, остеогенез. Их действие на углеводный обмен проявляется в развитии гипергликемии. Тиреоидные гормоны влияют на липидный обмен , активируя липолиз, в - окисление жирных кислот. Действие их на азотистый обмен состоит в активировании синтеза белков, ферментов, нуклеиновых кислот.

Гипофункция тиреоидных гормонов в детском возрасте приводит к развитию кретинизма , симптомами которого являются низкий рост, умственная отсталость. У взрослых людей гипофункция тиреоидных гормонов сопровождается микседемой - слизистым отёком, нарушением обмена гликозаминогликанов соединительной ткани и задержкой воды. При недостатке тиреоидных гормонов нарушаются энергетические процессы, развивается мышечная слабость, гипотермия. Эндемический зоб возникает при дефиците йода, отмечается разрастание железы и, как правило, гипофункция.

Гиперфункция проявляется как тиреотоксикоз (базедова болезнь) , симптомами которого являются истощение организма, гипертермия, гипергликемия, поражение сердечной мышцы, неврологическая симптоматика, пучеглазие (экзофтальм)

Аутоиммунный тиреоидит связан с образованием антител к рецепторам тиреоидных гормонов, компенсаторным увеличением синтеза гормонов щитовидной железой.

Гормоны мозгового слоя надпочечников (катехоламины)

К гормонам мозгового слоя надпочечников относятся адреналин, норадреналин - производные аминокислоты тирозина.

Адреналин влияет на углеводный обмен, вызывает гипергликемию, усиливая распад гликогена в печени до глюкозы. Адреналин влияет на жировой обмен , активирует липолиз, повышает концентрацию в крови свободных жирных кислот. Адреналин усиливает катаболизм белков . Адреналин оказывает влияние многие физиологические процессы: обладает вазотоническим (сосудосуживающим), кардиотоническим эффектом является гормоном стресса,

Норадреналин - в большей степени проявляет нейромедиаторный эффект.

Гиперпродукция катехоламинов наблюдается при феохромоцитоме (опухоль хромаффинных клеток)

Гормоны эпифиза

Эпифиз продуцирует гормоны мелатонин, адреногломерулотропин, эпиталамин

Мелатонин по химической природе является производным триптофана. Мелатонин регулирует синтез тканевых пигментов (меланинов), оказывает осветляющий эффект в ночное время суток и является антагонистом меланотропина гипофиза. Мелатонин влияет на дифференцировку клеток, оказывает противоопухолевое действие, стимулирует иммунные процессы, препятствует преждевременному половому созреванию. Вместе с эпиталамином (пептид) определяет биологические ритмы организма: выработку гонадотропных гормонов, суточные ритмы, сезонные ритмы.

Адреногломерулотропин (производное триптофана) активирует в надпочечниках выработку минералокортикоидов и, таким образом, регулирует водно-минеральный обмен.

Гормоны коры надпочечников

Гормоны коры надпочечников: глюкокортикоиды, минералокортикоиды, предшественники мужских половых гормонов относятся к стероидным гормонам, являющими производными спирта холестерина.

Глюкокортикоиды

Кортикостерон, кортизон и гидрокортизон (кортизол ) влияют на все виды обмена. Влияя на углеводный обмен , вызывают гипергликемию, активируют глюконеогенез. Глюкокортикоиды регулируют липидный обмен , усиливая липолиз на конечностях, активируя липогенез на лице и груди (появляется лунообразное лицо). Влияя на белковый обмен , глюкокортикоиды активирует распад белков в большинстве тканей, но усиливают синтез белков в печени. Глюкокортиоиды оказывает выраженное противовоспалительное действие, ингибируя фософолипазу А 2 и, вследствие этого, угнетая синтез эйкозаноидов. Глюкокортикоиды обеспечивают стресс-реакцию, а в больших дозах подавляют иммунные процессы.

Гиперфункция глюкокортикостероидов может быть гипофизарного происхождения или проявлением недостаточности выработки гормонов коркового слоя надпочечников. Она проявляется заболеванием Иценко-Кушинга . Гипофункция - болезнь Аддисона (бронзовая болезнь), проявляется сниженной сопротивляемостью организма, нередко гипертензией, гиперпигментацией кожи.

Минералокортикоиды

Дезоксикортикостерон, альдостерон регулируют водно-солевой обмен, способствует задержке натрия и выведению через почки калия и протонов.

При гиперфункции наблюдается гипертензия, происходит задержка воды, повышение нагрузки на сердечную мышцу, снижение уровня калия, развивается аритмия, алкалоз. Гипофункция ведёт к гипотонии, сгущению крови, нарушению работы почек, ацидозу.

Предшественники андрогенов

Предшественником андрогенов является дегидроэпиандростерон (ДЭПС). При его гиперпродукции возникает вирилизм, при котором у женщин формируется волосяной покров по мужскому типу. В тяжелой форме развивается адреногенитальный синдром.

5. Мужские половые гормоны (андрогены)

тестостерон

гормон половой органический биологический

К андрогенам относятся андростерон, тестостерон , дигидротестостерон . Они влияют на все виды обмена, синтез белков, жиров, остеогенез, обмен фосфолипидов, определяют половую дифференцировку, поведенческие реакции, стимулируют развитие ЦНС. Гипофункция проявляется астеничной конституцией, инфантилизмом, нарушением формирования вторичных половых признаков.

6. Женские половые гормоны (эстрогены)

эстрадиол

Эстрогенами являются эстрон, эстрадиол, эстриол . Они синтезируются из андрогенов путём ароматизации первого кольца. Эстрогены регулируют овариально-менструальный цикл, протекание беременности, лактации. Они активируют анаболические процессы (синтез белков, фосфолипидов, остеогенез), проявляют гипохолестеринемическое действие. Гипофункция ведёт к аменорее, остеопорозу.

7. Гормоны плаценты

В эмбриональном периоде плацента играет роль эндокринной железы. К гормонам плаценты относятся, в частности, хорионический соматотропин, хорионический гонадотропин, эстрогены, прогестерон, релаксин.

Обмен стероидных гормонов в эмбриональном периоде происходит в единой системе «мать-плацента-плод». Холестерин из организма матери поступает в плаценту, где преобразуется в прегненолон (предшественник стероидных гормонов). У плода прегненолон трансформируется в андрогены, которые поступают в плаценту. В плаценте из андрогенов синтезируются эстрогены, которые поступают в организм беременной женщины. Экскреция ею эстрогенов служит критерием протекания беременности.

Особенности гормонального статуса у детей

Сразу после рождения активируется функция гипофиза, коры надпочечников для обеспечения стрессовой реакции. Активация функции щитовидной железы и мозгового слоя надпочечников направлены на усиление липолиза, распад гликогена и на согревание организма. В этот период наблюдается некоторая гипофункция паращитовидной железы, гипокальциемия.

В первое время после рождения ребёнок получает некоторые гормоны в составе грудного молока. В первые дни после рождения может развиваться половой криз, связанный с отсутствием эффекта половых гормонов матери. Он проявляется нагрубанием молочных желез, появлением жировых точек, гнойничков, отёком половых органов.

В дошкольном возрасте активируется щитовидная, вилочковая железа, эпифиз, гипофиз.

К периоду полового созревания эпифиз и тимус подвергаются инволюции, заметно активируется выработка гонадотропных и половых гормонов.

Литература

1. РАН, Всероссийский ин-т научной и технической информации; Сост.: Е.С. Панкратова, В.К. Финн; Под общ. ред. В.К. Финна: Автоматическое порождение гипотез в интеллектуальных системах. - М.: ЛИБЕРКОМ, 2009

2. РАН, Общество биохимиков и молекулярных биологов, Институт биохимии им. А.Н. Баха; отв. ред. Л.П. Овчинников: Успехи биологической химии. - Пущино: ОНТИ ПНЦ РАН, 2009

3. : Молчание генов. - Пущино: ОНТИ ПНЦ РАН, 2008

4. Зурабян С.Э.: Номенклатура природных соединений. - М.: ГЭОТАР-Медиа, 2008

5. Комов В.П.: Биохимия. - М.: Дрофа, 2008

6. под ред. Е.С. Северина; рец.: А.А. Терентьев, Н.Н. Чернов: Биохимия с упражнениями и задачами. - М.: ГЭОТАР-Медиа, 2008

7. Под ред.: Д.М. Зубаирова, Е.А. Пазюк; Рец.: Ф.Н. Гильмиярова, И.Г. Щербак: Биохимия. - М.: ГЭОТАР-Медиа, 2008

8. Сотников О.С.: Статика и структурная кинетика живых асинаптических дендритов. - СПб.: Наука, 2008

9. Тюкавкина Н.А.: Биоорганическая химия. - М.: Дрофа, 2008

10. Александровская Е.И.: Антропохимия. - М.: Класс-М, 2007

Размещено на Allbest.ru

...

Подобные документы

    Система гормональной регуляции. Номенклатура и классификация гормонов. Принципы передачи гормонального сигнала клеткам-мишеням. Строение гидрофильных гормонов, механизм их действия. Метаболизм пептидных гормонов. Представители гидрофильных гормонов.

    реферат , добавлен 12.11.2013

    Особенности желез внутренней секреции. Методы исследования функции желез внутренней секреции. Физиологические свойства гормонов. Типы влияния гормонов. Классификация гормонов по химической структуре и направленности действия. Пути действия гормонов.

    презентация , добавлен 23.12.2016

    Гормоны коры и мозгового вещества надпочечников. Механизм действия стероидных гормонов. Функциональные взаимодействия в системе "гипоталамус - гипофиз - кора надпочечников". Гормоны щитовидной железы и их синтез. Синдромы нарушения выработки гормонов.

    презентация , добавлен 08.01.2014

    Определение понятия "гормон". Ознакомление с историей изучения эндокринных желез и гормонов, составлением их общей классификации. Рассмотрение специфических особенностей биологического действия гормонов. Описание роли рецепторов в данном процессе.

    презентация , добавлен 23.11.2015

    Основные системы регуляции метаболизма. Функции эндокринной системы по регуляции обмена веществ посредством гормонов. Организация нервно-гормональной регуляции. Белково-пептидные гормоны. Гормоны - производные аминокислот. Гормоны щитовидной железы.

    презентация , добавлен 03.12.2013

    Характеристика гормонов, особенности их образования, роль в регулировании работы организма. Функциональные группы гормонов. Гипоталамо-гипофизарная система. Эффекторные гормоны ГГС. Рилизинг-факторы гипоталамуса. Описание тропных гормонов аденогипофиза.

    презентация , добавлен 21.03.2014

    Понятие о гормонах, их основных свойствах и механизме действия. Гормональная регуляция обмена веществ и метаболизма. Гипоталамо-гипофизарная система. Гормоны периферических желез. Классификация гормонов по химической природе и по выполняемым функциям.

    презентация , добавлен 21.11.2013

    Химическая природа и классификация гормонов. Биороль простагландинов и тромбоксанов. Регуляция секреции гормонов. Гормональная регуляция углеводного, липидного, белкового и водно-солевого обмена. Роль циклазной системы в механизме действия гормонов.

    курсовая работа , добавлен 18.02.2010

    Эндокринная система человека. Железы внешней и внутренней секреции. Свойства гормонов. Гипофиз как важнейшая железа эндокринного аппарата. Гормоны щитовидной железы. Морфология женских и мужских половых желез. Гормональная активность половых желез.

    курсовая работа , добавлен 16.06.2012

    Органические вещества, предназначенные для управления функциями организма. Принцип действия гормонов. Воздействие на организм серотонина, мелатонина, адреналина, норадреналина, грелина, лептина, дофамина, эндорфина, эстрогена, прогестерона и тестостерона.

К гормонам относят разнообразные по химической природе соединения, вырабатываемые в эндокринных железах, секретируемые непосредственно в кровь, оказывающие дистанционный биологический эффект. Они являются гуморальными посредниками, которые обеспечивают поступление сигнала в клетки-мишени и вызывают специфические изменения в сенситивных к ним тканях и органах. Отдельно выделяют тканевые гормоны, синтезируемые особыми эндокринными или рабочими клетками внутренних органов (почек, кишечника, легких, желудка и так далее), крови и оказывающие действие преимущественно в месте выработки.

Гормоны оказывают свой эффект в очень малых концентрациях (10 -3 –10 -12 моль/л). У каждого из них существует свой ритм секреции в течение суток, месяца или времени года, специфический для каждого гормона период жизни, как правило, очень короткий (секунды, минуты, редко часы).

По химической природе гормональные молекулы относят к трем группам соединений:

  • белки и пептиды;
  • производные аминокислот;
  • стероиды и производные жирных кислот.

Регуляция

Регуляцию деятельности эндокринных органов осуществляет центральная нервная система посредством прямых иннервационных воздействий (нейро-проводниковый компронент), а также через управление работой гипофиза гипоталамическими рилизинг-факторами: стимулирующими либеринами и тормозящими статинами (нейро-эндокринный компонент). Гипофиз транслирует эти сигналы в виде своих тропных гормонов соответствующим эндокринным железам. Гормоны влияют на работу нервной системы попосредством изменения содержания глюкозы, регуляции синтеза белка в мозге, потенцирования действия медиаторов и т. д. Чаще всего это влияние осуществляется по механизму отрицательной обратной связи. Тот же механизм действует внутри эндокринной системы: гормоны периферических желез снижают активность центральной железы – гипофиза.

Синтез

Синтез гормонов в эндокринных железах и клетках завершается, как правило, на стадии образования активной формы. Иногда синтезируются малоактивные или вообще неактивные молекулы, называемые прогормонами. В таком виде может осуществляться резервирование или транспортировка к месту рецепции (например, после ферментативного отщепления C‑пептида от проинсулина освобождается активный инсулин).

Секреция

Секреция гормонов в кровь осуществляется посредством активного выброса и зависит от нервных, эндокринных, метаболических воздействий. В эндокринных опухолях такая зависимость может быть нарушена и гормоны секретируются спонтанно.

Молекулы гормонов способны депонироваться в клетках эндокринных желез (иногда – рабочих органов) за счет образования комплекса с белками, ионами двухвалентных металлов, РНК или накопления внутри субклеточных структур.

Транспорт

Транспорт гормона от места синтеза к месту действия, метаболизма или выведения осуществляется кровью. В свободной форме циркулирует до 10% общего количества гормона, остальной пул ‑ в комплексе с белками плазмы и форменными элементами крови. С неспецифическим транспортным белком – альбумином связано менее 10% гормона, со специфическими белками более 90%. Специфическими белками являются: транскортин для кортикостероидов и прогестерона, секс-стероидсвязывающий глобулин для андрогенов и эстрогенов, тироксинсвязывающий и интер-a‑глобулины для тиреоидов, инсулинсвязывающий глобулин и другие. Вступив в комплекс с белками, гормоны депонируются в кровяном русле, временно выключаясь из сферы биологического действия и метаболических превращений (обратимая инактивация). Активной становится свободная форма гормона. С учетом этого факта разработаны методы определения общего количества гормона, свободной и связанной с белками форм и самих белков-переносчиков.

Рецепция

Рецепция и эффект гормона на органы-мишени является основным звеном эндокринной регуляции. Способность гормона к передаче регуляторного сигнала обусловлена наличием в клетках-мишенях специфических рецепторов.

Рецепторы в большинстве случаев – белки, преимущественно гликопротеиды, имеющие специфическое фосфолипидное микроокружение. Связывание гормона с рецептором определяется законом действующих масс по кинетике Михаэлиса. При рецепции возможно проявление положительного или отрицательного кооперативных эффектов, когда ассоциация первых молекул гормона с рецептором облегчает или затрудняет связывание последующих.

Рецепторный аппарат обеспечивает избирательный прием гормонального сигнала и инициацию специфического эффекта в клетке. Локализация рецепторов в определенной мере обусловливает тип действия гормона. Выделяют несколько групп рецепторов :

1) Поверхностные : при взаимодействии с гормоном меняют конформацию мембран, стимулируя перенос ионов или субстратов в клетку (инсулин, ацетилхолин).

2). Трансмембранные : имеют контактный участок на поверхности и внутримембранную эффекторную часть, связанную с аденилат- или гуанилатциклазой. Образование внутриклеточных мессенджеров – цАМФ и цГМФ – стимулирует специфические протеинкиназы, влияющие на синтез белка, активность ферментов и т.д. (полипептиды, амины).

3) Цитоплазматические : связываются с гормоном и в виде активного комплекса поступают в ядро, где контактируют с акцептором, приводя к усилению синтеза РНК и белка (стероиды).

4) Ядерные : существуют в виде комплекса негистонового белка и хроматина. Контакт с гормоном напрямую включает механизм его действия (гормоны щитовидной железы).

Величина эффекта гормона зависит от концентрации гормонального рецептора, поступающего к клеткам-мишеням, от числа специфических рецепторов, степени их сродства и избирательности к гормону. На величину эффекта может влиять действие других гормонов, как антагонистическое (инсулин и глюкокортикоиды разнонаправленно действуют на поступление глюкозы в клетку), так и потенцирующее (глюкокортикоиды усиливают влияние катехоламинов на сердце и мозг).

Изучение функционирования рецепторного аппарата актуально в клинике, особенно при сахарном диабете, вызванном рецепторной инсулинорезистентностью, при синдроме тестикулярной феминизации или определении гормон-чувствительных опухолей молочной железы.

Инактивация

Инактивация гормонов происходит под влиянием соответствующих ферментных систем в самих железах внутренней секреции, в органах-мишенях, а также в крови, печени и почках.

Основные химические превращения гормонов:

  • образование эфиров серной или глюкуроновой кислот;
  • отщепление участков молекул;
  • изменение структуры активных участков с помощью метилирования, ацетилирования и т.д.;
  • окисления, восстановления или гидроксилирования.

Катаболизм является важным механизмом регуляции активности гормонов. Через влияние на концентрацию свободного гормона в крови, по механизму обратной связи, контролируется скорость его секреции железой. Усиление катаболизма смещает в крови динамическое равновесие между свободным и связанным гормоном в сторону его свободной формы, тем самым, повышая доступ гормона в ткани. Длительное усиление распада некоторых гормонов может подавлять биосинтез специфических транспортных белков, увеличивая пул свободного ‑ активного гормона. Скорость разрушения гормона – его метаболический клиренс – оценивают величиной объема плазмы, очищенной от исследуемых молекул за единицу времени.

Выведение

Выведение гормонов и их метаболитов осуществляется почками с мочой, печенью с желчью, желудочно-кишечным трактом с пищеварительными соками, кожей с потом. Продукты распада пептидных гормонов поступают в общий пул аминокислот организма.

Способ выведения зависит от свойств гормона или его метаболита: структуры, растворимости и т.д.

Приоритетным материалом при изучении выведения гормонов в клинике является моча . Исследование порционной или суммарной величины экскреции гормонов и метаболитов с мочой дает представление об общей величине секреции гормона за сутки или в отдельные их периоды.

Таким образом, эндокринная функция представляет собой сложную, многокомпонентную систему взаимосвязанных процессов, определяющих на различных уровнях как специфику и силу гормонального сигнала, так и чувствительность клеток и тканей к данному гормону.

Нарушения в системе эндокринной регуляции могут быть связаны с любым из названных звеньев.

  • Вперёд >

В последние десятилетия достигнуты большие успехи в расшифровке молекулярных механизмов действия гормонов. Этому в немалой степени способствовали такие важные события, как открытие вторичных внутриклеточных посредников (цикло-АМФ, цикло-ГМФ, фосфоинозитидов и ионов кальция), разработка радиоизотопных методов исследования гормональных рецепторов, а также открытие ГТФ-связывающих белков, обеспечивающих передачу сигналов вовнутрь клетки. Несмотря на большое количество гормонов, обладающих к тому же разнообразными функциями и имеющих различные структуры, механизмы их действия в значительной мере унифицированы. Можно выделить два основных механизма действия гормонов на клетки-мишени: мембрано-опосредованный, характерный для водорастворимых гормонов, нс проникающих в клетку, а также цитозольный, по которому функционируют липофильные, водонерастворимые гормоны, легко пересекающие плазматические мембраны.

Мембрано-опосредованный механизм. Основные циклы первого этапа передачи гормонального сигнала протекают в плазматической мембране. Они связаны с узнаванием и трансформацией гормонального сигнала и осуществляются при помощи сложной надмолекулярной системы в несколько этапов. М. Родбелл, формализуя проблему с точки зрения кибернетики, так обозначил эти этапы: дискриминатор (рецептор) узнает сигнал, далее происходит преобразование его при помощи соответствующего преобразователя и, наконец, усилитель усиливает его на несколько порядков уже внутри клетки. Ниже приведена схема передачи информационного сигнала (по Rodbell).

Рецептор (дискриминатор ). Он селекционирует и узнает соответствующий гормон и создает условия для каскадного усиления гормонального сигнала. Рецептор представляет собой гликопротеин, причем гликозидная часть его принимает непосредственное участие в связывании гормона.

Фермент аденшатцшиаза (усилитель ). Это компонент рецепторной системы, который воспринимает и многократно усиливает гормональный сигнал. Это гликопротеин с молекулярной массой около 150 kDa, локализованный в цитоплазматической мембране. Аденилатциклаза имеет две активные SH-группы и несколько аллостерических центров.

Регулятор (преобразователь ). Он представляет собой белки, связанные и с рецептором, и с аденилатциклазой. Фактически это два белка, имеющие сродство к ГТФ, поэтому их называют G-белки. Один из этих белков является активатором (стимулятором) аденилатциклазы (G st), другой - ингибитором (G ing). Каждый G-бслок состоит из трех полипептидных цепей (а, р и у). В состоянии «покоя» тример G-белка ассоциирован с ГДФ. Молекулярные механизмы, связанные с трансляцией и усилением сигнала, заключаются в следующем. Гормон, взаимодействуя с рецептором, изменяет его конформацию, при этом происходит диссоциация комплекса С 51 -белок-ГДФ. Кроме того, сам G-белок диссоциирует на Р,у-димер и а-субъсдиницу, к которой присоединяется ГТФ. Этот комплекс взаимодействуете сульфгидрильной группой аденилатциклазы и активирует данный фермент. Активная аденилатциклаза катализирует процесс синтеза цАМФ из АТФ. Ингибиторное действие Gj -белка

обусловлено тем, что его 3,5-димер препятствует взаимодействию ГТФ с а-субъединицей G^-белка (рис. 11.1).


Активация аденилатциклазы сопровождается распадом ГТФ, при этом происходит ассоциация полипептидных цепей G-белка в тримср в комплексе с ГДФ. В процессе активации аденилатциклазы участвуют Mg 2+ , Са 2+ и Мп 2+ , способствующие регуляции активности фермента.

Циклические аденинмононуклеотиды в цитоплазме взаимодействуют с ферментом протеинкиназой А или С, которая в отсутствие цАМФ находится в неактивном состоянии. Протеинкиназа представляет собой тетрамер, состоящий из двух каталитических (С 2) и двух регуляторных (R 2) субъединиц, который под действием цАМФ диссоциирует на два димера (рис. 11.2).

После диссоциации протеинкиназы ее каталитические субъединицы осуществляют процесс фосфорилирования белков. Присоединение фосфатной группировки происходит по ОН-группам аминокислотных остатков тирозина, треонина или серина, при этом структура и биологическая активность фосфо- рилированного белка может существенно изменяться. В качестве примера можно привести активацию фосфорилазы Ь , которая под действием киназы фосфорилазы b фосфорилируется и превращается в активную фосфорилазу а>

Рис. 11.1.

АЦ - аленилатииклаза: G y - белок, стимулирующий активацию аленилатииклазы: G II4 - белок, ингибирующий действие аденилатциклазы

Рис. 11.2.


Рис. 11.3.

катализирующую процесс отщепления от гликогена и фосфорилирования глюкозы (рис. 11.3).

Процесс дефосфорилирования белков происходит под действием ферментов группы фосфопрогеинфосфатаз. Фосфорилирование белков пАМФ-зави- симыми протеинкиназами не ограничивается цитоплазмой. С-Каталитические субъединицы протеинкиназ способны пересекать ядерные мембраны и, фосфорилируя ядерные белки - гистоны, регулировать генную активность клеток.

Избыточное количество цАМФ разрушается под действием фосфодиэсте- разы. Имеются две формы этого фермента: растворимая, активируемая ионами Са 2+ , и мембраносвязанная, каталитическое действие которой не связано с Са 2+ . Для активации растворимой фосфод и эстеразы кроме ионов кальция необходим специальный кальций-связывающий белок - кальмодулин. Комплекс Са 2+ -кальмодулин присоединяется к фосфодиэстеразе и активирует ее:


Гуанилатциклазная система , подобно вышеописанной, основана на активации гуанидатциклазы и образовании цГМФ. Обнаружены две изоформы гу- анилатциклазы - растворимая и мембранно-связанная. Последняя в результате гормонального сигнала или действия специфичных пептидов активируется и катализирует синтез цГМФ по схеме:

Имеется семейство цГМФ-зависимых протеинкиназ (протеинкиназы G), которые осуществляют фосфорилирование белков, подобно протеин киназам А или С. Однако цАМФ- и цГМФ-зависимое фосфорилирование белков строго специфично, обусловлено различными ферментными системами и реализует различные биологические эффекты.

Са-внутримешочный посредник гормонов. Поступление Са 2+ в цитоплазму клетки регулируется гормонами, селективно изменяющими проницаемость мембран, Са 2+ /Н + -АТФ-зависимым насосом, а также освобождением Са 2+ , депонированного в митохондриях и эндоплазматическом ретикулуме. Белок кальмодулин присоединяет четыре иона Са 2+ , что приводит к резкому изменению его конформации в основном за счет увеличения степени а-спирализа- ции. В результате кальмодулин-зависимые ферменты могут активироваться (инактивироваться) и изменять скорость зависимых биохимических процессов в клетке (рис. 11.4).

Из множества ферментов, регулируемых Са 2+ , следует отметить протеин- киназы С, фосфорилирующие растворимые белки цитозоля, фосфод и эстеразы и аденилатциклазы, которые, в свою очередь, являются регуляторами процессов фосфорилирования белков. Связь Са 2+ с гормонами очевидна, так как при его дефиците действие гормонов прекращается. В приведенном выше примере фосфорилирования фосфорилазы b и перевода ее в активную форму существенную роль играет Са 2+ -кальмодулин.

Цитозольный механизм. Он характерен для липофильных гормонов, легко проникающих в клетку. К ним относятся стероидные гормоны и некоторые гормоны, производные ароматических аминокислот. Рецепторы этих гормонов локализованы в цитоплазме или в ядре и представляют собой первый молекулярный элемент, воспринимающий внеклеточный информационный сигнал посредством специфического связывания и включающий цепь последующих событий.

Внутриклеточные рецепторы относятся к сложным глобулярным белкам - гликопротеинам с молекулярной массой от 60 до 250 kDa. Они имеют трехдоменную структуру (рис. 11.5).

Неактивированные рецепторы или апорецепторы в своем составе содержат белки теплового шока: hsp 90, hsp 70 и hsp 56, которые также присосдиня-

Рис. 11.4. Образование активного комплекса фермент - кальмодулин-Са 2+

Рис. 11.5.

/ - /V-концевой домен, связывающий рецептор с определенными участками ДНК; 2 - центральный ДНК-связываю шин домен; 3 - С-конисвой гормон - связывающий домен

ются к С-концевому домену и в отсутствие лиганда поддерживают рецептор в неактивном состоянии. Белок теплового шока hsp 90 увеличивает аффинность связывания рецептора с гормоном, подавляя вместе с тем его сродство к компонентам ядра клетки. Присоединение к рецептору комплементарного гормона приводит к диссоциации белков теплового шока, после чего гормон-рецеп- торный комплекс фосфорилируется и приобретает аффинность к ядрам, т. е. активируется (табл. 11.1).

Механизм передачи и трансформации гормонального сигнала осуществляется в несколько этапов (рис. 11.6).

Транспорт гормона в клетку. Широко распространенное ранее мнение о том, что липофильные гормоны проходят через бислойные мембраны клеток посредством простой диффузии, подвергается сомнению из-за наличия гидрофильного слоя гликопротеинов на клеточной поверхности. Более вероятным


Рис. 11.6.


Рис. 11.7.

представляется наличие специальных переносчиков гормонов, переносящих их вовнутрь клетки методом облегченной диффузии.

  • Образование гормон-рецепторного комплекса. Гормон присоединяется к своему рецептору, при этом происходит фосфорилирование рецептора и отделение от него белков теплового шока.
  • Транслокация комплекса в ядро. Активированный гормон-рсцспторный комплекс связывается с ядерными мембранами и перемещается в ядро клетки.
  • Взаимодействие гормон-рецепторного комплекса с ядерными структурами. После перемещения в ядро активный гормон-рецепторный комплекс взаимодействует с регуляторными последовательностями структурных генов ДНК в области промотора, что приводит к увеличению транскрипционной активности (рис. 11.7).
  • Отделение гормон-рецепторного комплекса от хроматина. После освобождения гормон-рецепторного комплекса и его дефосфорилирования ядерными фосфопротсинфосфатазами происходит диссоциация комплекса на гормон и рецептор, последний перемещается в цитоплазму, ассоциируется с белками теплового шока и включается в следующий цикл передачи гормонального сигнала. Этот процесс называется рециклизацией гормонального рецептора. В некоторых случаях рециклизация не происходит, так как рецептор после поступления из ядра в цитоплазму подвергается протеолитическому расщеплению.

Организм человека существует как единое целое благодаря системе внутренних связей, которая обеспечивает передачу информации от одной клетки к другой в одной и той же ткани или между разными тканями. Без этой системы невозможно поддерживать гомеостаз. В передаче информации между клетками в многоклеточных живых организмах, принимают участие три системы: ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА (ЦНС), ЭНДОКРИННАЯ СИСТЕМА (ЖЕЛЕЗЫ ВНУТРЕННЕЙ СЕКРЕЦИИ) и ИММУННАЯ СИСТЕМА.

Способы передачи информации во всех названных системах - химические. Посредниками при передаче информации могут быть СИГНАЛЬНЫЕ молекулы.

К таким сигнальным молекулам относятся четыре группы веществ: ЭНДОГЕННЫЕ БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА (медиаторы иммунного ответа, факторы роста и др.), НЕЙРОМЕДИАТОРЫ, АНТИТЕЛА (иммуноглобулины) и ГОРМОНЫ.

Б И О Х И М И Я Г О Р М О Н О В

ГОРМОНЫ - это биологически активные вещества, которые синтезируются в малых количествах в специализированнных клетках эндокринной системы и через циркулирующие жидкости (например, кровь) доставляются к клеткам-мишеням, где оказывают свое регулирующее действие.

Гормоны, как и другие сигнальные молекулы, обладают некоторыми общими свойствами.

ОБЩИЕ СВОЙСТВА ГОРМОНОВ.

1) выделяются из вырабатывающих их клеток во внеклеточное пространство;

2) не являются структурными компонентами клеток и не используются как источник энергии.

3) способны специфически взаимодействовать с клетками, имеющими рецепторы для данного гормона.

4) обладают очень высокой биологической активностью - эффективно действуют на клетки в очень низких концентрациях (около 10 -6 - 10 -11 моль/л).

МЕХАНИЗМЫ ДЕЙСТВИЯ ГОРМОНОВ.

Гормоны оказывают влияние на клетки-мишени.

КЛЕТКИ-МИШЕНИ - это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.

БИОХИМИЧЕСКИЕ МЕХАНИЗМЫ ПЕРЕДАЧИ СИГНАЛА ОТ ГОРМОНА В КЛЕТКУ-МИШЕНЬ.

Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций:

- "узнавание" гормона;

Преобразование и передачу полученного сигнала в клетку.

Каким образом белок-рецептор узнает ту молекулу гормона, с которой он может взаимодействовать?

Один из доменов белка-рецептора имеет в своем составе участок, комплементарный какой-то части сигнальной молекулы. Процесс связывания рецептора с сигнальной молекулой похож на процесс образования фермент-субстратного комплекса и может определяется величиной константы сродства.

Большинство рецепторов изучены недостаточно, потому что их выделение и очистка очень сложные, а содержание каждого вида рецепторов в клетках очень низкое. Но известно, что гормоны взаимодействуют со своими рецепторами физико-химическим путем. Между молекулой гормона и рецептором формируются электростатические и гидрофобные взаимодействия. При связывании рецептора с гормоном происходят конформационные изменения белка-рецептора и комплекс сигнальной молекулы с белком-рецептором активируется. В активном состоянии он может вызывать специфические внутриклеточные реакции в ответ на принятый сигнал. Если нарушен синтез или способность белков-рецепторов связываться с сигнальными молекулами, возникают заболевания - эндокринные нарушения. Есть три типа таких заболеваний:

1. Связанные с недостаточностью синтеза белков-рецепторов.

2. Связанные с изменением структуры рецептора - генетических дефекты.

3. Связанные с блокированием белков-рецепторов антителами.



error: Контент защищен !!